scholarly journals Stellar winds in A-type supergiants

1994 ◽  
Vol 162 ◽  
pp. 538-539
Author(s):  
E. Verdugo ◽  
A. Talavera

A-type supergiants are just at the boundary between the early type supergiants, with strong stellar winds driven by radiation pressure and the cool supergiants in which the origin of mass loss is the dissipation of mechanical energy. The mechanisms involved in the mass loss processes in A supergiants as a whole, are still uncertain.

1988 ◽  
Vol 108 ◽  
pp. 102-113
Author(s):  
Cornelis de Jager ◽  
Hans Nieuwenhuijzen

AbstractA review is given of rate of mass-loss values in the upper part of the Hertzsprung-Russell diagram. Near the luminosity limit of stellar existance = −10−4 M⊙ yr−1. Episodical mass loss in bright variable super- and hypergiants does not significantly increase this value. For Wolf-Rayet stars the rate of mass loss is larger by a factor 140 than for non-evolved stars with the same Teff and L; for C stars this factor is ten. This can be explained qualitatively. Rotation appears hardly to influence the rate of mass loss except for vrot-values close to the break-up velocity. This is in accordance with theory. We suggest the existence of a Red Supergiant Branch; along that branch mass loss is virtually independent of luminosity. Stellar winds along the upper limit of stellar existence are mainly due: to radiation pressure for hot supergiants (≳ 10 000 K); to turbulent pressure for cool supergiants (3000-10 000 K), and to dust-driven and pulsation-driven winds for cooler stars. The turbulent pressure may originate in largescale stochastic motions as observed in Alpha Cyg. Episodical mass loss, as observed in P Cyg, HR 8752 and other Very Luminous Variables may be due to occasional violent stochastic motions, resulting in a shock-driven episodical mass-loss component.


1979 ◽  
Vol 83 ◽  
pp. 243-247
Author(s):  
P. B. Kunasz

Statistical equilibrium calculations for the first ten levels of H and He+ were carried out for several model atmospheres of a star with Teff = 40,000 K and log g = 3.5, using the method of Mihalas and Kunasz (1978). Atomic level populations and line profiles were computed for “model C” calculated by Klein and Castor (1978) and for variants of this model in which material density and mass loss rates were scaled down by factors of 2.0, 2.2, 2.5 and 4.0. We will refer to these variant models as D, E, F, and G. The resulting line profiles are discussed. Two variants of the Klein-Castor model C are generally successful and produce He II λ4686 in emission with λ3204 in absorption. All normal Of stars observed with He II λ4686 in emission have λ3204 in absorption. In one of the models, Hα is in emission, while Hβ and the higher Balmer lines remain in absorption, as is commonly observed in Of spectra.


1981 ◽  
Vol 59 ◽  
pp. 27-33
Author(s):  
Allan J. Willis

The stellar winds of hot early-type stars are characterised spectroscopically by the presence of P-Cygni profiles, which are most marked for resonance transitions of common ions and generally occur in the UV, and typical resonance lines of SiIV, CIV, NV and OVI are well known P-Cygni signatures of stellar winds in luminous OB stars. Analyses of these profiles can lead to important information concerning the velocity, density and temperature structure of such winds. The WR stars have more developed stellar winds than OB stars, supporting higher particle densities at larger distances from the stellar “photosphere”. Recently Barlow, Smith & Willis, hereinafter BSW, (1980), have derived reliable mass loss rates for 21 WR stars. The mean value is 4x10-5 M0 /y and the rates are considerably larger than can be accomodated by soley radiative models. The, as yet unidentified, mechanism initiating the WR mass loss may also be important for Of stars ( Lamers 1980 ).


1982 ◽  
Vol 99 ◽  
pp. 185-196
Author(s):  
David C. Abbott

Peter Conti has a tradition of always talking about 0-type stars at Wolf-Rayet symposia, and Wolf-Rayet stars at 0 star symposia. Since there is no well-developed theory for the origin of the winds of WR stars, it is my pleasure to join Peter's tradition, and to talk mainly about the theory of radiation driven winds in OB stars. The advantage of OB stars is that there exists a fairly complete wind theory, which agrees well with the available observations. The question is, can the mass loss observed from Wolf-Rayet stars be explained by a version of this wind theory which is scaled to the conditions found in the envelopes of Wolf-Rayet stars? The topics I consider are: —The calculated radiation pressure in OB stars, and its dependence on temperature, density, and chemical composition.—A comparison between predicted and observed mass loss rates and terminal velocities for OB stars.—The applicability of the standard radiation driven wind models to Wolf-Rayet stars.—Speculations on how Wolf-Rayet stars achieve their enormous mass loss rates within the context of the radiation pressure mechanism.


2007 ◽  
Vol 3 (S250) ◽  
pp. 39-46
Author(s):  
Alex de Koter

AbstractWe report on a comprehensive study of the wind properties of 115 O- and early B-type stars in the Galaxy and the Large Magellanic Clouds. This work is part of the VLT/FLAMES Survey of Massive Stars. The data is used to construct the empirical dependence of the mass-loss in stellar winds on the metal content of their atmospheres. The metal content of early-type stars in the Magellanic Clouds is discussed. Assuming a power-law dependence of mass loss on metal content, Ṁ ∝ Zm, we find m = 0.83 ± 0.16 from an analysis of the wind momentum luminosity relation (Mokiem et al. 2007b). This result is in good agreement with the prediction m = 0.69 ± 0.10 by Vink et al. (2001). Though the scaling agrees, the absolute empirical value of mass loss is found to be a factor of two higher than predictions. This may be explained by a modest amount of clumping in the outflows of the objects studied.


Galaxies ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 10 ◽  
Author(s):  
Kris Davidson

Very massive stars occasionally expel material in colossal eruptions, driven by continuum radiation pressure rather than blast waves. Some of them rival supernovae in total radiative output, and the mass loss is crucial for subsequent evolution. Some are supernova impostors, including SN precursor outbursts, while others are true SN events shrouded by material that was ejected earlier. Luminous Blue Variable stars (LBV’s) are traditionally cited in relation with giant eruptions, though this connection is not well established. After four decades of research, the fundamental causes of giant eruptions and LBV events remain elusive. This review outlines the basic relevant physics, with a brief summary of essential observational facts. Reasons are described for the spectrum and emergent radiation temperature of an opaque outflow. Proposed mechanisms are noted for instabilities in the star’s photosphere, in its iron opacity peak zones, and in its central region. Various remarks and conjectures are mentioned, some of them relatively unfamiliar in the published literature.


2008 ◽  
Vol 4 (S256) ◽  
pp. 325-336
Author(s):  
Christopher J. Evans

AbstractThe past decade has witnessed impressive progress in our understanding of the physical properties of massive stars in the Magellanic Clouds, and how they compare to their cousins in the Galaxy. I summarise new results in this field, including evidence for reduced mass-loss rates and faster stellar rotational velocities in the Clouds, and their present-day compositions. I also discuss the stellar temperature scale, emphasizing its dependence on metallicity across the entire upper-part of the Hertzsprung-Russell diagram.


2007 ◽  
Vol 3 (S250) ◽  
pp. 89-96
Author(s):  
D. John Hillier

AbstractThe standard theory of radiation driven winds has provided a useful framework to understand stellar winds arising from massive stars (O stars, Wolf-Rayet stars, and luminous blue variables). However, with new diagnostics, and advances in spectral modeling, deficiencies in our understanding of stellar winds have been thrust to the forefront of our research efforts. Spectroscopic observations and analyses have shown the importance of inhomogeneities in stellar winds, and revealed that there are fundamental discrepancies between predicted and theoretical mass-loss rates. For late O stars, spectroscopic analyses derive mass-loss rates significantly lower than predicted. For all O stars, observed X-ray fluxes are difficult to reproduce using standard shock theory, while observed X-ray profiles indicate lower mass-loss rates, the potential importance of porosity effects, and an origin surprisingly close to the stellar photosphere. In O stars with weak winds, X-rays play a crucial role in determining the ionization balance, and must be taken into account.


2014 ◽  
Vol 1 ◽  
pp. 39-41 ◽  
Author(s):  
J. S. Vink

Abstract. We discuss the origin and quantification of wind clumping and mass–loss rates (Ṁ), particularly in close proximity to the Eddington (Γ) limit, relevant for very massive stars (VMS). We present evidence that clumping may not be the result of the line-deshadowing instability (LDI), but that clumps are already present in the stellar photosphere.


Sign in / Sign up

Export Citation Format

Share Document