scholarly journals Formation of the Planetary Sequence in a Highly Flattened Disk of Frequently Colliding Planetesimals

2004 ◽  
Vol 202 ◽  
pp. 181-183
Author(s):  
Evgeny Griv ◽  
Michael Gedalin ◽  
David Eichler ◽  
Chi Yuan

The kinetic theory is used to study the evolution of the self-gravitating disk of planetesimals. The effects of frequent collisions between planetesimals are taken into account by using a Krook integral in the Boltzmann kinetic equation. It is shown that as a result of an aperiodic collision-dissipative instability of small gravity disturbances the disk is subdivided into numerous dense fragments. These can eventually condense into the planetary sequence.

2007 ◽  
Vol 73 (5) ◽  
pp. 757-772 ◽  
Author(s):  
ALEXEY MISHCHENKO ◽  
AXEL KÖNIES

AbstractA systematic first-principles approach to the many-particle formulation of the gyro-kinetic theory is suggested. The gyro-kinetic many-particle Hamiltonian is derived using the Lie transform technique. The generalized gyro-kinetic equation is obtained following the Born–Bogoliubov–Green–Kirkwood–Yvon approach. The microscopic expression for the self-consistent potential and the polarization density is obtained. It is shown that new terms appear in the gyro-kinetic polarization that can not be derived in the conventional approach. An expression for the collision term is obtained in the Landau approximation.


2001 ◽  
Vol 64 (2) ◽  
Author(s):  
M-C. Firpo ◽  
F. Doveil ◽  
Y. Elskens ◽  
P. Bertrand ◽  
M. Poleni ◽  
...  

2011 ◽  
Vol 50 (1) ◽  
pp. 189-198 ◽  
Author(s):  
V.V. Aristov ◽  
O.I. Rovenskaya

2021 ◽  
Vol 2056 (1) ◽  
pp. 012007
Author(s):  
S S Sitnikov ◽  
F G Tcheremissine ◽  
T A Sazykina

Abstract Two-dimensional binary gas mixture outflow from a vessel into vacuum through a thin slit is studied on the basis of direct solution of the Boltzmann kinetic equation. For evaluation of collision integrals in the Boltzmann equation a conservative projection method is used. Numerical simulation of a two-dimensional argon-neon gas mixture outflow from a vessel into vacuum was performed. Graphs of mixture components flow rate dependence on time during the flow formation, as well as fields of molecular density and temperature for steady-state regime, were obtained.


2021 ◽  
Author(s):  
Sergei Annenkov ◽  
Victor Shrira ◽  
Leonel Romero ◽  
Ken Melville

<p>We consider the evolution of directional spectra of waves generated by constant and changing wind, modelling it by direct numerical simulation (DNS), based on the Zakharov equation. Results are compared with numerical simulations performed with the Hasselmann kinetic equation and the generalised kinetic equation, and with airborne measurements of waves generated by offshore wind, collected during the GOTEX experiment off the coast of Mexico. Modelling is performed with wind measured during the experiment, and the initial conditions are taken as the observed spectrum at the moment when wind waves prevail over swell after the initial part of the evolution.</p><p>Directional spreading is characterised by the second moment of the normalised angular distribution function, taken at selected wavenumbers relative to the spectral peak. We show that for scales longer than the spectral peak the angular spread predicted by the DNS is close to that predicted by both kinetic equations, but it underestimates the corresponding measured value, apparently due to the presence of swell. For the spectral peak and shorter waves, the DNS shows good agreement with the data. A notable feature is the steady growth of angular width at the spectral peak with time/fetch, in contrast to nearly constant width in the kinetic equations modelling. Dependence of angular width on wavenumber is shown to be much weaker than predicted by the kinetic equations. A more detailed consideration of the angular structure at the spectral peak at large fetches shows that the kinetic equations predict an angular distribution with a well-defined peak at the central angle, while the DNS reproduces the observed angular structure, with a flat peak over a range of angles.</p><p>In order to study in detail the differences between the predictions of the DNS and the kinetic equations modelling under idealised conditions, we also perform numerical simulations for the case of constant wind forcing. As in the previous case of forcing by real wind, the most striking difference between the kinetic equations and the DNS is the steady growth with time of angular width at the spectral peak, which is demonstrated by the DNS, but is not present in the modelling with the kinetic equations. We show that while the kinetic theory, both in the case of the Hasselmann equation and the generalised kinetic equation, predicts a relatively simple shape of the spectral peak, the DNS shows a more complicated structure, with a flat top and dependence of the peak position on angle. We discuss the approximations employed in the derivation of the kinetic theory and the possible causes of the found differences of directional structure.</p>


Sign in / Sign up

Export Citation Format

Share Document