scholarly journals Frequency Map and Global Dynamics in Planetary systems: Short Period Dynamics

2004 ◽  
Vol 202 ◽  
pp. 235-237
Author(s):  
Philippe Robutel ◽  
Jacques Laskar

Frequency Map Analysis (FMA) (Laskar, 1990, 1999) is a refined numerical method based on Fourier techniques which provide a clear representation of the global dynamics of multi-dimensional systems, which is very effective for systems of 3 degrees of freedom and more, and was applied to a large class of dynamical systems. FMA requires only a very short integration time to obtain a measure of the diffusion of the trajectories, and allows to identify easily the location of the main resonances. Using this method, we have performed a complete analysis of massless particles in the Solar System (Robutel & Laskar 2001), from Mercury to the outer parts of the Kuiper belt (90 AU), for all values of the eccentricities, and several values for the inclinations. This provides a complete dynamical map of the Solar System, which is, in this first step, restricted to mean motion resonances. The dynamics of a planetary system which all the bodies have no zero mass can be studied with the same methods: an application to the JupiterSaturn system can be fined in (Robutel & Laskar 2002). We present here the application of this method to the understanding of the dynamics of the newly discovered v-Andromedae system.

1994 ◽  
Vol 160 ◽  
pp. 31-44
Author(s):  
Jane Luu

The existence of a belt of comets in the outer solar system (the “Kuiper belt”) has been postulated for a variety of reasons, including the need for a source for the short-period comets. The existence of the belt seems supported by the discoveries of the trans-Neptunian objects 1992 QB1, 1993 FW, 1993 RO, 1993 RP, 1993 SB, and 1993 SC. If these objects are members of the Kuiper belt, crude lower limits on the belt population can be established from the discoveries. The Kuiper belt comets are likely to be primordial remnants of the disk from which the solar system accreted. According to the current theories of cometary nucleus evolution, these objects are expected to possess mantles (“irradiation mantles”) which are different from mantles of comets which have been heated to the point of sublimation (“rubble mantles”). Kuiper belt comets on their way to short-period comet orbits may exist among the Centaur objects.


2008 ◽  
Vol 8 (2) ◽  
pp. 75-80 ◽  
Author(s):  
J. Horner ◽  
B.W. Jones

AbstractIt has long been assumed that the planet Jupiter acts as a giant shield, significantly lowering the impact rate of minor bodies upon the Earth, and thus enabling the development and evolution of life in a collisional environment which is not overly hostile. In other words, it is thought that, thanks to Jupiter, mass extinctions have been sufficiently infrequent that the biosphere has been able to diversify and prosper. However, in the past, little work has been carried out to examine the validity of this idea. In the second of a series of papers, we examine the degree to which the impact risk resulting from objects on Centaur-like orbits is affected by the presence of a giant planet, in an attempt to fully understand the impact regime under which life on Earth has developed. The Centaurs are a population of ice-rich bodies which move on dynamically unstable orbits in the outer Solar system. The largest Centaurs known are several hundred kilometres in diameter, and it is certain that a great number of kilometre or sub-kilometre sized Centaurs still await discovery. These objects move on orbits which bring them closer to the Sun than Neptune, although they remain beyond the orbit of Jupiter at all times, and have their origins in the vast reservoir of debris known as the Edgeworth–Kuiper belt that extends beyond Neptune. Over time, the giant planets perturb the Centaurs, sending a significant fraction into the inner Solar System where they become visible as short-period comets. In this work, we obtain results which show that the presence of a giant planet can act to significantly change the impact rate of short-period comets on the Earth, and that such planets often actually increase the impact flux greatly over that which would be expected were a giant planet not present.


2015 ◽  
Vol 112 (14) ◽  
pp. 4214-4217 ◽  
Author(s):  
Konstantin Batygin ◽  
Greg Laughlin

The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System’s terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter’s inward migration entrained s ≳ 10−100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System’s terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution.


1998 ◽  
Vol 11 (1) ◽  
pp. 223-228
Author(s):  
R. Malhotra

Ideas about the contents of the Solar System beyond Neptune and Pluto can be traced back to at least Edgeworth (1943, 1949) and Kuiper (1951), who speculated on the existence of pre-planetary small bodies in the outer Solar System beyond the orbit of Neptune - remnants of the accretion process in the primordial Solar Nebula. The basis for the speculation was primarily the argument that the Solar Nebula was unlikely to have been abruptly truncated at the orbit of Neptune, and that in the trans-Neptunian accretion timescales were too long for bodies larger than about ˜ 1000 km in radius to have formed in the 4.5 billion year age of the Solar System. Another important theoretical argument relevant to this region of the Solar System is related to the origin of short period comets. Fernández (1980) suggested that the short period comets may have an origin in a disk of small bodies beyond Neptune, rather than being “captured” from the population of long period comets originating in the Oort Cloud, the latter scenario having considerable difficulty reconciling the observed flux of short period comets with the exceedingly low efficiency of transfer of long period comet orbits to short period ones by means of the gravitational perturbations of the giant planets. The new scenario received further strength in the numerical work of Duncan et al. (1988) and Quinn et al. (1990) which showed that the relatively small orbital inclinations of the Jupiter-family short period comets were not consistent with a source in the isotropic Oort Cloud of comets but could be reproduced with a source in a low-inclination reservoir beyond Neptune’s orbit. Duncan et al. named this hypothetical source the Kuiper Belt, and the name has come into common use in the last decade (although other names are also in use, e.g. Edgeworth-Kuiper Belt, and trans-Neptunian objects). A recent theoretical milestone was the work by Holman and Wisdom (1993) and Levison and Duncan (1993) on the long term stability of test particle orbits in the trans-Neptunian Solar System. This work showed that low-eccentricity, low-inclination orbits with semimajor axes in excess of about 43 AU are stable on billion year timescales, but that in the region between 35 AU and 43 AU orbital stability times range from 107 yr to more than 109 yr [see, for example, figure 1 in Holman (1995)]. Orbital instability in this intermediate region typically leads to a close encounter with Neptune which causes dramatic orbital changes, with the potential for subsequent transfer to the inner Solar System. Thus, this region could in principle serve as the reservoir of short period comets at the present epoch. However, the idea of a kinematically cold — i.e. low-eccentricity, low-inclination — population in this region is at odds with recent observations, and the question of the origin of short period comets remains unsettled at the present time.


2001 ◽  
Vol 11 (05) ◽  
pp. 1359-1380 ◽  
Author(s):  
LUZ V. VELA-AREVALO ◽  
STEPHEN WIGGINS

We present a new method of frequency analysis for Hamiltonian Systems of 3 degrees of freedom and more. The method is based on the concept of instantaneous frequency extracted numerically from the continuous wavelet transform of the trajectories. Knowing the time-evolution of the frequencies of a given trajectory, we can define a frequency map, resonances, and diffusion in frequency space as an indication of chaos. The time-frequency analysis method is applied to the Baggott Hamiltonian to characterize the global dynamics and the structure of the phase space in terms of resonance channels. This 3-degree-of-freedom system results from the classical version of the quantum Hamiltonian for the water molecule given by Baggott [1988]. Since another first integral of the motion exists, the so-called Polyad number, the system can be reduced to 2 degrees of freedom. The dynamics is therefore simplified and we give a complete characterization of the phase space, and at the same time we could validate the results of the time-frequency analysis.


2019 ◽  
Vol 630 ◽  
pp. A60 ◽  
Author(s):  
Miao Li ◽  
Yukun Huang ◽  
Shengping Gong

Aims. Asteroids in mean motion resonances (MMRs) with planets are common in the solar system. In recent years, increasingly more retrograde asteroids are discovered, several of which are identified to be in resonances with planets. We here systematically present the retrograde resonant configurations where all the asteroids are trapped with any of the eight planets and evaluate their resonant condition. We also discuss a possible production mechanism of retrograde centaurs and dynamical lifetimes of all the retrograde asteroids. Methods. We numerically integrated a swarm of clones (ten clones for each object) of all the retrograde asteroids (condition code U < 7) from −10 000 to 100 000 yr, using the MERCURY package in the model of solar system. We considered all of the p/−q resonances with eight planets where the positive integers p and q were both smaller than 16. In total, 143 retrograde resonant configurations were taken into consideration. The integration time was further extended to analyze their dynamical lifetimes and evolutions. Results. We present all the meaningful retrograde resonant configurations where p and q are both smaller than 16 are presented. Thirty-eight asteroids are found to be trapped in 50 retrograde mean motion resonances (RMMRs) with planets. Our results confirm that RMMRs with giant planets are common in retrograde asteroids. Of these, 15 asteroids are currently in retrograde resonances with planets, and 30 asteroids will be captured in 35 retrograde resonant configurations. Some particular resonant configurations such as polar resonances and co-orbital resonances are also identified. For example, Centaur 2005 TJ50 may be the first potential candidate to be currently in polar retrograde co-orbital resonance with Saturn. Moreover, 2016 FH13 is likely the first identified asteroid that will be captured in polar retrograde resonance with Uranus. Our results provide many candidates for the research of retrograde resonant dynamics and resonance capture. Dynamical lifetimes of retrograde asteroids are investigated by long-term integrations, and only ten objects survived longer than 10 Myr. We confirmed that the near-polar trans-Neptunian objects 2011 KT19 and 2008 KV42 have the longest dynamical lifetimes of the discovered retrograde asteroids. In our long-term simulations, the orbits of 12 centaurs can flip from retrograde to prograde state and back again. This flipping mechanism might be a possible explanation of the origins of retrograde centaurs. Generally, our results are also helpful for understanding the dynamical evolutions of small bodies in the solar system.


1999 ◽  
Vol 173 ◽  
pp. 315-320
Author(s):  
R. Gabryszewski

AbstractThe investigation of KBOs’ dynamics is based on numerical orbital integrations on extremly long time scales due to orbital evolution of particles. The evolution of KBOs to JFCs needs a time-span of order of 109years. Such a long time of integration affects errors. So the question arises what is the boundary of an integration time to distinguish the physical solution from numerical noise and what it depends on. This paper presents numerical integrations of less than 150 massless test particles in the model of the Solar System which consists of 4 giant planets and the central mass. For each test particle computations were repeated at least twice on different computers and using two different methods of integration. The results show that an increase of errors in a solution depends on the eccentricity and the inclination of an orbit. The estimated maximum time-span of integration is of the order of 10 million years for highly elliptic orbits (e 0.6) and up to 125 million years for quasi-circular orbits (for particular model of the Solar System with orbits of massless objects outside Neptune's orbit). After long time-span of integration (120-130 Myrs) the solution can be completely chaotic. It cannot be stated unequivocally that this is one of the possible particle's paths or that this is just a numerical noise. So a different way of studying KBOs’ and SP comets’ dynamical evolution is needed. The integration of equations of motion between particular phases of objects which are considered as comets in different phases of their lives (KBOs − Centaurs − Comets − possibly extinct Comets) could be the new way of studying the dynamical evolution of SP comets.


Sign in / Sign up

Export Citation Format

Share Document