scholarly journals Testing Cosmogonic Models With Gravitational Lensing

1996 ◽  
Vol 173 ◽  
pp. 65-70 ◽  
Author(s):  
Joachim Wambsganss ◽  
Renyue Cen ◽  
Jeremiah P. Ostriker ◽  
Edwin L. Turner

Gravitational lensing provides a strict test of cosmogonic models. We use fully non-linear numerical propagation of light rays through a model universe with inhomogeneities derived from a particular cosmogonic model, i.e. three-dimensional lensing simulations, to study its lensing properties. As a first example we present results for the standard CDM scenario. The lensing test for this model predicts that we should have seen far more widely split quasar images than have been found.

2019 ◽  
Vol 34 (04) ◽  
pp. 1950029
Author(s):  
Siamak Akhshabi

We investigate the propagation of light rays and evolution of optical scalars in gauge theories of gravity where torsion is present. Recently, the modified Raychaudhuri equation in the presence of torsion has been derived. We use this result to derive the basic equations of geometric optics for several different interesting solutions of the Poincaré gauge theory of gravity. The results show that the focusing effects for neighboring light rays will be different than general relativity. This in turn has practical consequences in the study of gravitational lensing effects and also in determining the angular diameter distance for cosmological objects.


2018 ◽  
Vol 14 (S342) ◽  
pp. 19-23
Author(s):  
Fabio Bacchini ◽  
Bart Ripperda ◽  
Alexander Y. Chen ◽  
Lorenzo Sironi

AbstractWe present recent developments on numerical algorithms for computing photon and particle trajectories in the surrounding of compact objects. Strong gravity around neutron stars or black holes causes relativistic effects on the motion of massive particles and distorts light rays due to gravitational lensing. Efficient numerical methods are required for solving the equations of motion and compute i) the black hole shadow obtained by tracing light rays from the object to a distant observer, and ii) obtain information on the dynamics of the plasma at the microscopic scale. Here, we present generalized algorithms capable of simulating ensembles of photons or massive particles in any spacetime, with the option of including external forces. The coupling of these tools with GRMHD simulations is the key point for obtaining insight on the complex dynamics of accretion disks and jets and for comparing simulations with upcoming observational results from the Event Horizon Telescope.


Author(s):  
L. Salles ◽  
M. Vahdati

The aim of this paper is to study the effects of mistuning on fan flutter and to compare the prediction of two numerical models of different fidelity. The high fidelity model used here is a three-dimensional, whole assembly, time-accurate, viscous, finite-volume compressible flow solver. The Code used for this purpose is AU3D, written in Imperial College and validated for flutter computations over many years. To the best knowledge of authors, this is the first time such computations have been attempted. This is due to the fact that, such non-linear aeroelastic computations with mistuning require large amount of CPU time and cannot be performed routinely and consequently, faster (low fidelity) models are required for this task. Therefore, the second model used here is the aeroelastic fundamental mistuning model (FMM) and it based on an eigenvalue analysis of the linearized modal aeroelastic system with the aerodynamic matrix calculated from the aerodynamic influence coefficients. The influence coefficients required for this algorithm are obtained from the time domain non-linear Code by shaking one blade in the datum (tuned) frequency and mode. Once the influence coefficients have been obtained, the computations of aero damping require minimal amount of CPU time and many different mistuning patterns can be studied. The objectives of this work are to: 1. Compare the results between the two models and establish the capabilities/limitations of aeroelastic FMM, 2. Check if the introduction of mistuning would bring the experimental and computed flutter boundaries closer, 3. Establish a relationship between mistuning and damping. A rig wide-chord fan blade, typical of modern civil designs, was used as the benchmark geometry for this study. All the flutter analyses carried out in this paper are with frequency mistuning, but the possible consequences of mistuned mode shapes are briefly discussed at the end of this paper. Only the first family of modes (1F, first flap) is considered in this work. For the frequency mistuning analysis, the 1F frequency is varied around the annulus but the 1F mode shapes remain the same for all the blades. For the mode shape mistuning computations, an FE analysis of the whole assembly different mass blades is performed. The results of this work clearly show the importance of mistuning on flutter. It also demonstrates that when using rig test data for aeroelastic validation of CFD codes, the amount mistuning present must be known. Finally, it should be noted that the aim of this paper is the study of mistuning and not steady/unsteady validation of a CFD code and therefore minimal aerodynamic data are presented.


Sign in / Sign up

Export Citation Format

Share Document