angular diameter distance
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 27)

H-INDEX

13
(FIVE YEARS 6)

2021 ◽  
Vol 923 (2) ◽  
pp. 217
Author(s):  
Karl Gebhardt ◽  
Erin Mentuch Cooper ◽  
Robin Ciardullo ◽  
Viviana Acquaviva ◽  
Ralf Bender ◽  
...  

Abstract We describe the survey design, calibration, commissioning, and emission-line detection algorithms for the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). The goal of HETDEX is to measure the redshifts of over a million Lyα emitting galaxies between 1.88 < z < 3.52, in a 540 deg2 area encompassing a comoving volume of 10.9 Gpc3. No preselection of targets is involved; instead the HETDEX measurements are accomplished via a spectroscopic survey using a suite of wide-field integral field units distributed over the focal plane of the telescope. This survey measures the Hubble expansion parameter and angular diameter distance, with a final expected accuracy of better than 1%. We detail the project’s observational strategy, reduction pipeline, source detection, and catalog generation, and present initial results for science verification in the Cosmological Evolution Survey, Extended Groth Strip, and Great Observatories Origins Deep Survey North fields. We demonstrate that our data reach the required specifications in throughput, astrometric accuracy, flux limit, and object detection, with the end products being a catalog of emission-line sources, their object classifications, and flux-calibrated spectra.


Author(s):  
Michele Grasso ◽  
Eleonora Villa

Abstract BiGONLight, Bilocal Geodesic Operators framework for Numerical Light propagation, is a new tool for light propagation in Numerical Relativity. The package implements the Bi-local Geodesic Operators formalism, a new framework for light propagation in General Relativity. With BiGONLight it is possible to extract observables such as angular diameter distance, luminosity distance, magnification as well as new real-time observables like parallax and redshift drift within the same computation. As a test-bed for our code we consider two exact cosmological models, the ΛCDM and the inhomogeneous Szekeres model, and a simulated dust universe. All our tests show an excellent agreement with known results.


Author(s):  
John Herbert Marr

Hubble expansion may be considered as a velocity per photon travel time rather than as velocity or redshift per distance. Dimensionally, this is an acceleration and will have an associated curvature of space under general relativity. This paper explores this theoretical curvature as an extension to the spacetime manifold of general relativity, generating a modified solution with three additional non-zero Christoffel symbols, and a reformulated Ricci tensor and curvature. The observational consequences of this reformulation were compared with the &Lambda;CDM model for luminosity distance using the extensive type Ia supernovae (SNe Ia) data with redshift corrected to the CMB, and for angular diameter distance with the recent baryonic acoustic oscillation (BAO) data. For the SNe Ia data, the modified GR and &Lambda;CDM models differed by &minus;0.15+0.11&mu;B mag. over zcmb=0.01&minus;1.3, with overall weighted RMS errors of &plusmn;0.136&mu;B mag for modified GR and &plusmn;0.151&mu;B mag for &Lambda;CDM espectively. The BAO measures spanned a range z=0.106&minus;2.36, with weighted RMS errors of &plusmn;0.034 Mpc with H0=67.6&plusmn;0.25 for the modified GR model, and &plusmn;0.085 Mpc with H0=70.0&plusmn;0.25 for the &Lambda;CDM model. The derived GR metric for this new solution describes both the SNe Ia and the BAO observations with comparable accuracy to &Lambda;CDM without requiring the inclusion of dark matter or w&rsquo;-corrected dark energy.


Author(s):  
Andrés Lizardo ◽  
Mario H Amante ◽  
Miguel A García-Aspeitia ◽  
Juan Magaña ◽  
V Motta

Abstract Using a new sub-sample of observed strong gravitational lens systems, for the first time, we present the equation for the angular diameter distance in the y-redshift scenario for cosmography and use it to test the cosmographic parameters. In addition, we also use the observational Hubble data from cosmic chronometers and a Joint analysis of both data is performed. Among the most important conclusions are that this new analysis for cosmography using Strong Lensing Systems is equally competitive to constrain the cosmographic parameters as others presented in literature. Additionally, we present the reconstruction of the effective equation of state inferred from our samples, showing that at z = 0 those reconstructions from Strong Lensing Systems and Joint analysis are in concordance with the standard model of cosmology.


2021 ◽  
Vol 503 (1) ◽  
pp. 540-556
Author(s):  
E Sarpa ◽  
A Veropalumbo ◽  
C Schimd ◽  
E Branchini ◽  
S Matarrese

ABSTRACT We present the first application of the extended Fast Action Minimization method (eFAM) to a real data set, the SDSS-DR12 Combined Sample, to reconstruct galaxies orbits back-in-time, their two-point correlation function (2PCF) in real-space, and enhance the baryon acoustic oscillation (BAO) peak. For this purpose, we introduce a new implementation of eFAM that accounts for selection effects, survey footprint, and galaxy bias. We use the reconstructed BAO peak to measure the angular diameter distance, $D_\mathrm{A}(z)r^\mathrm{fid}_\mathrm{s}/r_\mathrm{s}$, and the Hubble parameter, $H(z)r_\mathrm{s}/r^\mathrm{fid}_\mathrm{s}$, normalized to the sound horizon scale for a fiducial cosmology $r^\mathrm{fid}_\mathrm{s}$, at the mean redshift of the sample z = 0.38, obtaining $D_\mathrm{A}(z=0.38)r^\mathrm{fid}_\mathrm{s}/r_\mathrm{s}=1090\pm 29$(Mpc)−1, and $H(z=0.38)r_\mathrm{s}/r^\mathrm{fid}_\mathrm{s}=83\pm 3$(km s−1 Mpc−1), in agreement with previous measurements on the same data set. The validation tests, performed using 400 publicly available SDSS-DR12 mock catalogues, reveal that eFAM performs well in reconstructing the 2PCF down to separations of ∼25h−1Mpc, i.e. well into the non-linear regime. Besides, eFAM successfully removes the anisotropies due to redshift-space distortion (RSD) at all redshifts including that of the survey, allowing us to decrease the number of free parameters in the model and fit the full-shape of the back-in-time reconstructed 2PCF well beyond the BAO peak. Recovering the real-space 2PCF, eFAM improves the precision on the estimates of the fitting parameters. When compared with the no-reconstruction case, eFAM reduces the uncertainty of the Alcock-Paczynski distortion parameters α⊥ and α∥ of about 40 per cent and that on the non-linear damping scale Σ∥ of about 70 per cent. These results show that eFAM can be successfully applied to existing redshift galaxy catalogues and should be considered as a reconstruction tool for next-generation surveys alternative to popular methods based on the Zel’dovich approximation.


Author(s):  
Zhongxu Zhai ◽  
Chia-Hsun Chuang ◽  
Yun Wang ◽  
Andrew Benson ◽  
Gustavo Yepes

Abstract We present a realistic 2000 deg2 Hα galaxy mock catalog with 1 &lt; z &lt; 2 for the Nancy Grace Roman Space Telescope galaxy redshift survey, the High Latitude Spectroscopic Survey (HLSS), created using Galacticus, a semi-analytical galaxy formation model, and high resolution cosmological N-body simulations. Galaxy clustering can probe dark energy and test gravity via baryon acoustic oscillation (BAO) and redshift space distortion (RSD) measurements. Using our realistic mock as the simulated Roman HLSS data, and a covariance matrix computed using a large set of approximate mocks created using EZmock, we investigate the expected precision and accuracy of the BAO and RSD measurements using the same analysis techniques used in analyzing real data. We find that the Roman Hα galaxy survey alone can measure the angular diameter distance with 2% uncertainty, the Hubble parameter with 3-6% uncertainty, and the linear growth parameter with 7% uncertainty, in each of four redshift bins. Our realistic forecast illustrates the power of the Roman galaxy survey in probing the nature of dark energy and testing gravity.


Author(s):  
Naonori S Sugiyama ◽  
Shun Saito ◽  
Florian Beutler ◽  
Hee-Jong Seo

Abstract We establish a practical method for the joint analysis of anisotropic galaxy two- and three-point correlation functions (2PCF and 3PCF) on the basis of the decomposition formalism of the 3PCF using tri-polar spherical harmonics. We perform such an analysis with MultiDark Patchy mock catalogues to demonstrate and understand the benefit of the anisotropic 3PCF. We focus on scales above 80 h−1 Mpc, and use information from the shape and the baryon acoustic oscillation (BAO) signals of the 2PCF and 3PCF. We also apply density field reconstruction to increase the signal-noise ratio of BAO in the 2PCF measurement, but not in the 3PCF measurement. In particular, we study in detail the constraints on the angular diameter distance and the Hubble parameter. We build a model of the bispectrum or 3PCF that includes the nonlinear damping of the BAO signal in redshift space. We carefully account for various uncertainties in our analysis including theoretical models of the 3PCF, window function corrections, biases in estimated parameters from the fiducial values, the number of mock realizations to estimate the covariance matrix, and bin size. The joint analysis of the 2PCF and 3PCF monopole and quadrupole components shows a $30\%$ and $20\%$ improvement in Hubble parameter constraints before and after reconstruction of the 2PCF measurements, respectively, compared to the 2PCF analysis alone. This study clearly shows that the anisotropic 3PCF increases cosmological information from galaxy surveys and encourages further development of the modeling of the 3PCF on smaller scales than we consider.


2020 ◽  
Vol 499 (4) ◽  
pp. 4613-4625
Author(s):  
Feng Shi ◽  
Yong-Seon Song ◽  
Jacobo Asorey ◽  
David Parkinson ◽  
Kyungjin Ahn ◽  
...  

ABSTRACT We explore the cosmological multitracer synergies between an emission-line galaxy distribution from the Dark Energy Spectroscopic Instrument and a Tianlai Project 21-cm intensity map. We use simulated maps generated from a particle simulation in the light-cone volume (Horizon Run 4), sky-trimmed and including the effects of foreground contamination, its removal and instrument noise. We first validate how the foreground residual affects the recovered 21-cm signal by putting different levels of foreground contamination into the 21-cm maps. We find that the contamination cannot be ignored in the angular autocorrelation power spectra of H i even when it is small, but it has no influence on the accuracy of the angular cross-correlation power spectra between H i and galaxies. In the foreground-cleaned map case, as information is lost in the cleaning procedure, there is also a bias in the cross-correlation power spectrum. However, we found that the bias from the cross-correlation power spectrum is scale-independent, which is easily parametrized as part of the model, while the offset in the H i autocorrelation power spectrum is non-linear. In particular, we tested that the cross-correlation power also benefits from the cancellation of the bias in the power spectrum measurement that is induced by the instrument noise, which changes the shape of the autocorrelation power spectra but leaves the cross-correlation power spectra unaffected. We then modelled the angular cross-correlation power spectra to fit the baryon acoustic oscillation feature in the broad-band shape of the angular cross-correlation power spectrum, including contamination from the residual foreground and the effect of instrument noise. We forecast a constraint on the angular diameter distance DA for the Tianlai Pathfinder redshift 0.775 &lt; z &lt; 1.03, giving a distance measurement with a precision of 2.7 per cent at that redshift.


2020 ◽  
Vol 500 (1) ◽  
pp. 1201-1221 ◽  
Author(s):  
Jiamin Hou ◽  
Ariel G Sánchez ◽  
Ashley J Ross ◽  
Alex Smith ◽  
Richard Neveux ◽  
...  

ABSTRACT We measure the anisotropic clustering of the quasar sample from Data Release 16 (DR16) of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (eBOSS). A sample of 343 708 spectroscopically confirmed quasars between redshift 0.8 &lt; z &lt; 2.2 are used as tracers of the underlying dark matter field. In comparison with DR14 sample, the final sample doubles the number of objects as well as the survey area. In this paper, we present the analysis in configuration space by measuring the two-point correlation function and decomposing it using the Legendre polynomials. For the full-shape analysis of the Legendre multipole moments, we measure the baryon acoustic oscillation (BAO) distance and the growth rate of the cosmic structure. At an effective redshift of zeff = 1.48, we measure the comoving angular diameter distance DM(zeff)/rdrag = 30.66 ± 0.88, the Hubble distance DH(zeff)/rdrag = 13.11 ± 0.52, and the product of the linear growth rate and the rms linear mass fluctuation on scales of $8 \, h^{-1}\, {\rm Mpc}$, fσ8(zeff) = 0.439 ± 0.048. The accuracy of these measurements is confirmed using an extensive set of mock simulations developed for the quasar sample. The uncertainties on the distance and growth rate measurements have been reduced substantially (∼45 and ∼30 per cent) with respect to the DR14 results. We also perform a BAO-only analysis to cross check the robustness of the methodology of the full-shape analysis. Combining our analysis with the Fourier-space analysis, we arrive at $D^{{\bf c}}_{\rm M}(z_{\rm eff})/r_{\rm drag} = 30.21 \pm 0.79$, $D^{{\bf c}}_{\rm H}(z_{\rm eff})/r_{\rm drag} = 13.23 \pm 0.47$, and $f\sigma _8^{{\bf c}}(z_{\rm eff}) = 0.462 \pm 0.045$.


2020 ◽  
Vol 499 (4) ◽  
pp. 5527-5546 ◽  
Author(s):  
Amélie Tamone ◽  
Anand Raichoor ◽  
Cheng Zhao ◽  
Arnaud de Mattia ◽  
Claudio Gorgoni ◽  
...  

ABSTRACT We present the anisotropic clustering of emission-line galaxies (ELGs) from the Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 (DR16). Our sample is composed of 173 736 ELGs covering an area of 1170 deg2 over the redshift range 0.6 ≤ z ≤ 1.1. We use the convolution Lagrangian perturbation theory in addition to the Gaussian streaming redshift space distortions to model the Legendre multipoles of the anisotropic correlation function. We show that the eBOSS ELG correlation function measurement is affected by the contribution of a radial integral constraint that needs to be modelled to avoid biased results. To mitigate the effect from unknown angular systematics, we adopt a modified correlation function estimator that cancels out the angular modes from the clustering. At the effective redshift, zeff = 0.85, including statistical and systematical uncertainties, we measure the linear growth rate of structure fσ8(zeff) = 0.35 ± 0.10, the Hubble distance $D_ H(z_{\rm eff})/r_{\rm drag} = 19.1^{+1.9}_{-2.1}$, and the comoving angular diameter distance DM(zeff)/rdrag = 19.9 ± 1.0. These results are in agreement with the Fourier space analysis, leading to consensus values of: fσ8(zeff) = 0.315 ± 0.095, $D_H(z_{\rm eff})/r_{\rm drag} = 19.6^{+2.2}_{-2.1}$, and DM(zeff)/rdrag = 19.5 ± 1.0, consistent with ΛCDM model predictions with Planck parameters.


Sign in / Sign up

Export Citation Format

Share Document