How good was the fossil record? Clues from the Californian Pleistocene

Paleobiology ◽  
1989 ◽  
Vol 15 (2) ◽  
pp. 83-94 ◽  
Author(s):  
James W. Valentine

The living members of 113 families of bivalves and gastropods of the Californian Province include 698 species living at shelf depths, of which 538 or 77% are known as Pleistocene fossils from the same region; another 113 fossil species are extralimital, and 98 are extinct. Living species not found as fossils are chiefly rare today, and/or minute, fragile, and/or from deeper shelf habitats. Sampling of the Pleistocene record has been biased towards shallow-water assemblages. Fragile and minute forms are probably underrepresented in the record. Rare forms, however, are still appearing as new studies are conducted, and many rare species are yet to be discovered. At least 85% of durably skeletonized living species may have been captured in the record. It is probable that most durably skeletonized invertebrate species were represented in lithostratigraphic units throughout the Phanerozoic, but that this record is lost owing to erosion, burial, and destruction of skeletons in situ. The bulk of the marine invertebrate fossil record does not represent a series of unusual skeletal accumulations, but rather the preserved remnants of an excellent original record formed through ordinary though episodic processes.

Zootaxa ◽  
2019 ◽  
Vol 4658 (1) ◽  
pp. 37-68
Author(s):  
LAURA NICOLI

Ceratophrys is the most diverse and widely distributed genus of Ceratophryidae, the clade of South American horned frogs. Numerous anuran fossil remains, including several fossil species, have been assigned to this genus. However, this seemingly extensive fossil record is problematic because several of the fossils are not properly identified and most of the taxonomic assignations are not justified. The present study traces all the fossil material attributed to Ceratophrys, clarifying, when possible, institutional allocations. Each of the remains was examined and its taxonomic assignation revisited, based on the morphology and possible synapomorphies of the genus, including its living species. Numerous fossils were properly identified and assigned with certainty to Ceratophrys. Only one fossil species, Ceratophrys ameghinorum, is considered valid. This information, along with recently reported evidence of fossil Ceratophrys, is briefly summarized to serve as a practical reference for the entire known fossil record of the genus. The fossil record is not especially informative about the evolution or distribution pattern of Ceratophrys, because most of the remains are relatively young (post-Miocene), collected within the present distribution of the genus, and morphologically consistent with that of the extant species. However, some useful information has emerged. The presence of Ceratophrys is well documented since the Neogene in the Pampean Region of South America. The single valid fossil species, Ceratophrys ameghinorum, possesses a unique combination of characters that reflects a mixture of characters observed in different clades of the genus; thus, resolution of its phylogentic position will inform our understanding of the evolution of the genus. The paleoenvironmental significance of some Ceratophrys fossils is also discussed, addressing the wide, but incompletely known current distribution and environmental tolerance of the genus.


1980 ◽  
Vol 3 ◽  
pp. 15-26 ◽  
Author(s):  
James Sprinkle

Echinoderms are a moderately successful phylum today with five classes and about 6,000 living species. They are found in all marine environments from the intertidal zone down to the bottom of deep-sea trenches. Because most echinoderms have a stable calcite skeleton made up of many distinctively-shaped plates, spines, stem and arm segments, and other parts, echinoderms have the potential to produce a long and rich fossil record, and we find this to be true. Although our knowledge of this record is far from complete, some past echinoderm faunas may have approached present-day echinoderm communities in number of coexisting genera and species. Also, many classes of echinoderms are known only from the fossil record, and as many as 12–13 classes may have occurred together at some times in the past. Although they have a wide ecologic range today, most fossil echinoderms are found in rocks representing shallow-water, subtidal, marine environments, either past continental shelves or epicontinental seas.


Paleobiology ◽  
2001 ◽  
Vol 27 (2) ◽  
pp. 262-289 ◽  
Author(s):  
Susan. L. Richardson

A phylogeny of 54 Recent and fossil species of Soritacea (Foraminifera) was used to test the hypothesis that endosymbiosis has driven the evolution of the clade. Endosymbiosis with photosynthetic eukaryotes is the plesiomorphic condition for the entire clade Soritacea. Living species dwell in tropical-subtropical, shallow-water habitats and are characterized by the possession of rhodophyte, chlorophyte, or dinophyte photosymbionts. Two distinct changes in endosymbiont type are recognized when endosymbiont type is mapped in the cladogram of Soritacea: (1) a change from rhodophyte to chlorophyte endosymbionts occurred in the stem lineage of the least inclusive clade containing New clade B, Orbiculinida, and Soritida; and (2) a change from chlorophyte to dinophyte endosymbionts occurred in the stem lineage of the least inclusive clade containing New clade G, New clade H, New clade I, Sorites, Amphisorus, and Orbitolites. When habitat and ontogeny are optimized on the cladogram of Soritida, the acquisition of dinophyte endosymbionts appears as a key innovation that facilitated a switch in habitat from free-living to attached living on nonphytal and phytal substrata. A subsequent change in the attached habitat from nonphytal to predominantly phytal (seagrasses and macroalgae) substrata is accompanied by a peramorphic trend in the megalospheric tests. The diversification (adaptive radiation) of the crown Soritida subclade resulted from the interplay between the acquisition of a key innovation (dinophyte endosymbionts) and the subsequent change in the ecology of the group (radiation to phytal substrates).


2018 ◽  
Vol 12 (7-8) ◽  
pp. 38-45
Author(s):  
A. N. EFREMOV ◽  
N. V. PLIKINA ◽  
T. ABELI

Rare species are most vulnerable to man-made impacts, due to their biological characteristics or natural resource management. As a rule, the economic impact is associated with the destruction and damage of individual organisms, the destruction or alienation of habitats. Unfortunately, the conservation of habitat integrity is an important protection strategy, which is not always achievable in the implementation of industrial and infrastructural projects. The aim of the publication is to summarize the experience in the field of protection of rare species in the natural habitat (in situ), to evaluate and analyze the possibility of using existing methods in design and survey activities. In this regard, the main methodological approaches to the protection of rare species in the natural habitat (in situ) during the proposed economic activity were reflected. The algorithm suggested by the authors for implementing the in situ project should include a preparatory stage (initial data collection, preliminary risk assessments, technology development, obtaining permitting documentation), the main stage, the content of which is determined by the selected technology and a long monitoring stage, which makes it possible to assess the effectiveness of the taken measures. Among the main risks of in situ technology implementation, the following can be noted: the limited resources of the population that do not allow for the implementation of the procedure without prior reproduction of individuals in situ (in vitro); limited knowledge of the biology of the species; the possibility of invasion; the possibility of crossing for closely related species that сo-exist in the same habitat; social risks and consequences, target species or population may be important for the local population; financial risks during the recovery of the population. The available experience makes it possible to consider the approach to the conservation of rare species in situ as the best available technology that contributes to reducing negative environmental risks.


2002 ◽  
Vol 11 ◽  
pp. 97-118
Author(s):  
Charles R. Marshall

Ever since Darwin proposed his theory of evolution (or more correctly, theories; see Mayr, 1991) it has been assumed that intermediates now extinct once existed between living species. For some, the hunt for these so-called missing links in the fossil record became an obsession, a search for evidence thought needed to establish the veracity of evolutionary theory. Few modern paleontologists, however, search explicitly for ancestors in the fossil record because we now know that fossils can be used to chart the order of evolution regardless of whether they are directly ancestral either to extinct organisms or to those living today.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iwona Kania-Kłosok ◽  
Wiesław Krzemiński ◽  
Antonio Arillo

AbstractFirst record of the genus Helius—long-rostrum cranefly from Maestrazgo Basin (eastern Spain, Iberian Penisula) is documented. Two new fossil species of the genus Helius are described from Cretaceous Spanish amber and compared with other species of the genus known from fossil record with particular references to these known from Cretaceous period. Helius turolensis sp. nov. is described from San Just amber (Lower Cretaceous, upper Albian) Maestrazgo Basin, eastern Spain, and Helius hispanicus sp. nov. is described from Álava amber (Lower Cretaceous, upper Albian), Basque-Cantabrian Basin, northern Spain. The specific body morphology of representatives of the genus Helius preserved in Spanish amber was discussed in relation to the environmental conditions of the Maestrazgo Basin and Basque-Cantabrian Basin in Cretaceous.


2000 ◽  
Vol 6 ◽  
pp. 171-182 ◽  
Author(s):  
Ben A. LePage ◽  
Hermann W. Pfefferkorn

When one hears the term “ground cover,” one immediately thinks of “grasses.” This perception is so deep-seated that paleobotanists even have been overheard to proclaim that “there was no ground cover before grasses.” Today grasses are so predominant in many environments that this perception is perpetuated easily. On the other hand, it is difficult to imagine the absence or lack of ground cover prior to the mid-Tertiary. We tested the hypothesis that different forms of ground cover existed in the past against examples from the Recent and the fossil record (Table 1). The Recent data were obtained from a large number of sources including those in the ecological, horticultural, and microbiological literature. Other data were derived from our knowledge of Precambrian life, sedimentology and paleosols, and the plant fossil record, especially in situ floras and fossil “monocultures.” Some of the data are original observations, but many others are from the literature. A detailed account of these results will be presented elsewhere (Pfefferkorn and LePage, in preparation).


Sign in / Sign up

Export Citation Format

Share Document