The importance of reporting the distributional criteria of FA

2000 ◽  
Vol 23 (4) ◽  
pp. 623-624
Author(s):  
Sally Walters

Not all of the studies cited in the target article as evidence that fluctuating asymmetry (FA) predicts male mating success demonstrate that the observed asymmetry is, in fact, FA. FA is a population-level pattern of differences between sides. Unless the population-level distributional criteria of bilateral traits are reported, the meaning of asymmetry in individuals is unknown.

2017 ◽  
Vol 115 (1) ◽  
pp. E53-E61 ◽  
Author(s):  
Grant C. McDonald ◽  
Tommaso Pizzari

Sexual selection is a fundamental evolutionary process but remains debated, particularly in the complexity of polyandrous populations where females mate with multiple males. This lack of resolution is partly because studies have largely ignored the structure of the sexual network, that is, the pattern of mate sharing. Here, we quantify what we call mating assortment with network analysis to specify explicitly the indirect as well as direct relationships between partners. We first review empirical studies, showing that mating assortment varies considerably in nature, due largely to basic properties of the sexual network (size and density) and partly to nonrandom patterns of mate sharing. We then use simulations to show how variation in mating assortment interacts with population-level polyandry to determine the strength of sexual selection on males. Controlling for average polyandry, positive mating assortment, arising when more polygynous males tend to mate with more polyandrous females, drastically decreases the intensity of precopulatory sexual selection on male mating success (Bateman gradient) and the covariance between male mating success and postcopulatory paternity share. Average polyandry independently weakened some measures of sexual selection and crucially also impacted sexual selection indirectly by constraining mating assortment through the saturation of the mating network. Mating assortment therefore represents a key—albeit overlooked—modulator of the strength of sexual selection. Our results show that jointly considering sexual network structure and average polyandry more precisely describes the strength of sexual selection.


1981 ◽  
Vol 117 (6) ◽  
pp. 1035-1039 ◽  
Author(s):  
Charles E. Taylor ◽  
Cindra Condra ◽  
Michael Conconi ◽  
Mary Prout

Genetics ◽  
1985 ◽  
Vol 109 (1) ◽  
pp. 157-175
Author(s):  
Ward B Watt ◽  
Patrick A Carter ◽  
Sally M Blower

ABSTRACT Male mating success as a function of genotype is an important fitness component. It can be studied in wild populations, in species for which a given group of progeny has exactly one father, by determining genotypes of wild-caught mothers and of sufficient numbers of their progeny. Here, we study male mating success as a function of allozyme genotype at two glycolytic loci in Colias butterflies, in which sperm precedence is complete, so that the most recent male to mate fathers all of a female's subsequent progeny.—For the phosphoglucose isomerase, PGI, polymorphism, we predict mating advantage and disadvantage of male genotypes based on evaluation of their biochemical functional differences in the context of thermal-physiological-ecological constraints on the insects' flight activity. As predicted, we find major, significant advantage in mating success for kinetically favored genotypes, compared to the genotype distribution of males active with the sampled females in the wild. These effects are repeatable among samples and on different semispecies' genetic backgrounds.—Initial study of the phosphoglucomutase, PGM, polymorphism in the same samples reveals heterozygote advantage in male-mating success, compared to males active with the females sampled. This contrasts with a lack of correspondence between PGI and PGM genotypes in other fitness index or component differences.—Epistatic interactions in mating success between the two loci are absent.—There is no evidence for segregation distortion associated with the alleles of either primary locus studied, nor is there significant assortative mating.—These results extend our understanding of the specific variation studied and suggest that even loci closely related in function may have distinctive experience of evolutionary forces. Implications of the specificity of the effects seen are briefly discussed.


2019 ◽  
Vol 286 (1904) ◽  
pp. 20190591 ◽  
Author(s):  
Alima Qureshi ◽  
Andrew Aldersley ◽  
Brian Hollis ◽  
Alongkot Ponlawat ◽  
Lauren J. Cator

Aedes aegypti is an important disease vector and a major target of reproductive control efforts. We manipulated the opportunity for sexual selection in populations of Ae . aegypti by controlling the number of males competing for a single female. Populations exposed to higher levels of male competition rapidly evolved higher male competitive mating success relative to populations evolved in the absence of competition, with an evolutionary response visible after only five generations. We also detected correlated evolution in other important mating and life-history traits, such as acoustic signalling, fecundity and body size. Our results indicate that there is ample segregating variation for determinants of male mating competitiveness in wild populations and that increased male mating success trades-off with other important life-history traits. The mating conditions imposed on laboratory-reared mosquitoes are likely a significant determinant of male mating success in populations destined for release.


2012 ◽  
Vol 23 (6) ◽  
pp. 1296-1307 ◽  
Author(s):  
Juan C. Alonso ◽  
Marina Magaña ◽  
Jose M. Álvarez-Martínez

Sign in / Sign up

Export Citation Format

Share Document