scholarly journals Discontinuity of topological entropy for Lozi maps

2011 ◽  
Vol 32 (5) ◽  
pp. 1783-1800 ◽  
Author(s):  
IZZET BURAK YILDIZ

AbstractRecently, Buzzi [Maximal entropy measures for piecewise affine surface homeomorphisms. Ergod. Th. & Dynam. Sys.29 (2009), 1723–1763] showed in the compact case that the entropy map f→htop(f) is lower semi-continuous for all piecewise affine surface homeomorphisms. We prove that topological entropy for Lozi maps can jump from zero to a value above 0.1203 as one crosses a particular parameter and hence it is not upper semi-continuous in general. Moreover, our results can be extended to a small neighborhood of this parameter showing the jump in the entropy occurs along a line segment in the parameter space.

2009 ◽  
Vol 29 (6) ◽  
pp. 1723-1763 ◽  
Author(s):  
JÉRÔME BUZZI

AbstractWe study the dynamics of piecewise affine surface homeomorphisms from the point of view of their entropy. Under the assumption of positive topological entropy, we establish the existence of finitely many ergodic and invariant probability measures maximizing entropy and prove a multiplicative lower bound for the number of periodic points. This is intended as a step towards the understanding of surface diffeomorphisms. We proceed by building a jump transformation, using not first returns but carefully selected ‘good’ returns to dispense with Markov partitions. We control these good returns through some entropy and ergodic arguments.


2021 ◽  
pp. 1-43
Author(s):  
DOMINIC VECONI

Abstract We develop a thermodynamic formalism for a smooth realization of pseudo-Anosov surface homeomorphisms. In this realization, the singularities of the pseudo-Anosov map are assumed to be fixed, and the trajectories are slowed down so the differential is the identity at these points. Using Young towers, we prove existence and uniqueness of equilibrium states for geometric t-potentials. This family of equilibrium states includes a unique SRB measure and a measure of maximal entropy, the latter of which has exponential decay of correlations and the central limit theorem.


2008 ◽  
Vol 28 (3) ◽  
pp. 843-862 ◽  
Author(s):  
YONGXIA HUA ◽  
RADU SAGHIN ◽  
ZHIHONG XIA

AbstractWe consider partially hyperbolic diffeomorphisms on compact manifolds. We define the notion of the unstable and stable foliations stably carrying some unique non-trivial homologies. Under this topological assumption, we prove the following two results: if the center foliation is one-dimensional, then the topological entropy is locally a constant; and if the center foliation is two-dimensional, then the topological entropy is continuous on the set of all $C^{\infty }$ diffeomorphisms. The proof uses a topological invariant we introduced, Yomdin’s theorem on upper semi-continuity, Katok’s theorem on lower semi-continuity for two-dimensional systems, and a refined Pesin–Ruelle inequality we proved for partially hyperbolic diffeomorphisms.


2011 ◽  
Vol 32 (1) ◽  
pp. 63-79 ◽  
Author(s):  
J. BUZZI ◽  
T. FISHER ◽  
M. SAMBARINO ◽  
C. VÁSQUEZ

AbstractWe show that a class of robustly transitive diffeomorphisms originally described by Mañé are intrinsically ergodic. More precisely, we obtain an open set of diffeomorphisms which fail to be uniformly hyperbolic and structurally stable, but nevertheless have the following stability with respect to their entropy. Their topological entropy is constant and they each have a unique measure of maximal entropy with respect to which periodic orbits are equidistributed. Moreover, equipped with their respective measure of maximal entropy, these diffeomorphisms are pairwise isomorphic. We show that the method applies to several classes of systems which are similarly derived from Anosov, i.e. produced by an isotopy from an Anosov system, namely, a mixed Mañé example and one obtained through a Hopf bifurcation.


1993 ◽  
Vol 13 (4) ◽  
pp. 807-830 ◽  
Author(s):  
Homer S. White

AbstractThis work is based on the author's dissertation. We examine the algorithmic complexity (in the sense of Kolmogorov and Chaitin) of the orbits of points in dynamical systems. Extending a theorem of A. A. Brudno, we note that for any ergodic invariant probability measure on a compact dynamical system, almost every trajectory has a limiting complexity equal to the entropy of the system. We use these results to show that for minimal dynamical systems, and for systems with the tracking property (a weaker version of specification), the set of points whose trajectories have upper complexity equal to the topological entropy is residual. We give an example of a topologically transitive system with positive entropy for which an uncountable open set of points has upper complexity equal to zero. We use techniques from universal data compression to prove a recurrence theorem: if a compact dynamical system has a unique measure of maximal entropy, then any point whose lower complexity is equal to the topological entropy is generic for that unique measure. Finally, we discuss algorithmic versions of the theorem of Kamae on preservation of the class of normal sequences under selection by sequences of zero Kamae-entropy.


2012 ◽  
Vol 33 (3) ◽  
pp. 870-895 ◽  
Author(s):  
RICARDO COUTINHO ◽  
BASTIEN FERNANDEZ

AbstractBeyond the uncoupled regime, the rigorous description of the dynamics of (piecewise) expanding coupled map lattices remains largely incomplete. To address this issue, we study repellers of periodic chains of linearly coupled Lorenz-type maps which we analyze by means of symbolic dynamics. Whereas all symbolic codes are admissible for sufficiently small coupling intensity, when the interaction strength exceeds a chain length independent threshold, we prove that a large bunch of codes is pruned and an extensive decay follows suit for the topological entropy. This quantity, however, does not immediately drop off to 0. Instead, it is shown to be continuous at the threshold and to remain extensively bounded below by a positive number in a large part of the expanding regime. The analysis is firstly accomplished in a piecewise affine setting where all calculations are explicit and is then extended by continuation to coupled map lattices based on$C^1$-perturbations of the individual map.


2001 ◽  
Vol Vol. 4 no. 2 ◽  
Author(s):  
Pascal Koiran

International audience We show that it is impossible to compute (or even to approximate) the topological entropy of a continuous piecewise affine function in dimension four. The same result holds for saturated linear functions in unbounded dimension. We ask whether the topological entropy of a piecewise affine function is always a computable real number, and conversely whether every non-negative computable real number can be obtained as the topological entropy of a piecewise affine function. It seems that these two questions are also open for cellular automata.


Sign in / Sign up

Export Citation Format

Share Document