scholarly journals The Supernova/GRB Connection

2005 ◽  
Vol 192 ◽  
pp. 403-410 ◽  
Author(s):  
P. Höflich ◽  
D. Baade ◽  
A. Khokhlov ◽  
L. Wang ◽  
J.C. Wheeler

SummaryWe discuss the possible connection between supernova explosions (SN) and gamma-ray bursters (GRB) from the perspective of our current understanding of SN physics. Core collapse supernovae (SN) are the final stages of stellar evolution in massive stars during which the central region collapses, forms a neutron star (NS) or black hole, and the outer layers are ejected. Recent explosion scenarios assumed that the ejection is due to energy deposition by neutrinos into the envelope but detailed models do not produce powerful explosions. There is new and mounting evidence for an asphericity and, in particular, for axial symmetry in several supernovae which may be hard to reconcile within the spherical picture. The 3-D signatures are a key to understand core collapse supernovae and the GRB/SN connection. In this paper we study the effects and observational consequences of asymmetric explosions.

2008 ◽  
Vol 23 (17n20) ◽  
pp. 1409-1418 ◽  
Author(s):  
TOSHITAKA KAJINO ◽  
TAKAHIRO SASAQUI ◽  
TAKASHI YOSHIDA ◽  
WAKO AOKI

Neutrinos play the critical roles in nucleosyntheses of light-to-heavy mass elements in core-collapse supernovae (SNe). The light element synthesis is affected strongly by neutrino oscillations (MSW effect) through the ν-process in outer layers of supernova explosions. Specifically the 7 Li and 11 B yields increase by factors of 1.9 and 1.3 respectively in the case of large mixing angle solution, normal mass hierarchy, and sin 2 2θ13 = 2 × 10−3 compared to those without the oscillations. In the case of inverted mass hierarchy or nonadiabatic 13-mixing resonance, the increment of their yields is much smaller. We thus propose that precise constraint on mass hierarchy and sin 2 2θ13 is given by future observations of Li / B ratio or Li abundance in stars and presolar grains which are made from supernova ejecta. Gamma ray burst (GRB) nucleosynthesis in contrast is not affected strongly by thermal neutrinos from the central core which culminates in black hole (BH), although the effect of neutrinos from proto-neutron star prior to black hole formation is still unknown. We calculate GRB nucleosynthesis by turning off the thermal neutrinos and find that the abundance pattern is totally different from ordinary SN nucleosynthesis which satisfies the universality to the solar abundance pattern.


Science ◽  
2018 ◽  
Vol 362 (6411) ◽  
pp. 201-206 ◽  
Author(s):  
K. De ◽  
M. M. Kasliwal ◽  
E. O. Ofek ◽  
T. J. Moriya ◽  
J. Burke ◽  
...  

Compact neutron star binary systems are produced from binary massive stars through stellar evolution involving up to two supernova explosions. The final stages in the formation of these systems have not been directly observed. We report the discovery of iPTF 14gqr (SN 2014ft), a type Ic supernova with a fast-evolving light curve indicating an extremely low ejecta mass (≈0.2 solar masses) and low kinetic energy (≈2 × 1050ergs). Early photometry and spectroscopy reveal evidence of shock cooling of an extended helium-rich envelope, likely ejected in an intense pre-explosion mass-loss episode of the progenitor. Taken together, we interpret iPTF 14gqr as evidence for ultra-stripped supernovae that form neutron stars in compact binary systems.


2011 ◽  
Vol 7 (S279) ◽  
pp. 75-82
Author(s):  
Paolo A. Mazzali

AbstractThe properties of the Supernovae discovered in coincidence with long-duration Gamma-ray Bursts and X-Ray Flashes are reviewed, and compared to those of SNe for which GRBs are not observed. The SNe associated with GRBs are of Type Ic, they are brighter than the norm, and show very broad absorption lines in their spectra, indicative of high expansion velocities and hence of large explosion kinetic energies. This points to a massive star origin, and to the birth of a black hole at the time of core collapse. There is strong evidence for gross asymmetries in the SN ejecta. The observational evidence seems to suggest that GRB/SNe are more massive and energetic than XRF/SNe, and come from more massive stars. While for GRB/SNe the collapsar model is favoured, XRF/SNe may host magnetars.


2008 ◽  
Vol 23 (27n30) ◽  
pp. 2451-2454
Author(s):  
KOHSUKE SUMIYOSHI

We report the recent developments on the tables of equation of state for dense matter and their influence on core-collapse supernovae and associated neutrino emissions. We study the gravitational collapse of massive stars by the numerical simulations with the tables of equation of state recently developed in relativistic many body frameworks. I discuss whether the equation of state of dense matter can be probed by the properties of neutrino signals from black hole forming supernovae, being different from ordinary neutrino bursts from supernova explosions.


2011 ◽  
Vol 7 (S279) ◽  
pp. 134-137
Author(s):  
Thierry Foglizzo ◽  
Frédéric Masset ◽  
Jérôme Guilet ◽  
Gilles Durand

AbstractMassive stars end their life with the gravitational collapse of their core and the formation of a neutron star. Their explosion as a supernova depends on the revival of a spherical accretion shock, located in the inner 200km and stalled during a few hundred milliseconds. Numerical simulations suggest that the large scale asymmetry of the neutrino-driven explosion is induced by a hydrodynamical instability named SASI. Its non radial character is able to influence the kick and the spin of the resulting neutron star. The SWASI experiment is a simple shallow water analog of SASI, where the role of acoustic waves and shocks is played by surface waves and hydraulic jumps. Distances in the experiment are scaled down by a factor one million, and time is slower by a factor one hundred. This experiment is designed to illustrate the asymmetric nature of core-collapse supernova.


2013 ◽  
Vol 87 (8) ◽  
Author(s):  
Nicholas Stone ◽  
Abraham Loeb ◽  
Edo Berger

2011 ◽  
Vol 7 (S279) ◽  
pp. 367-368
Author(s):  
Ken'ichiro Nakazato ◽  
Kohsuke Sumiyoshi

AbstractSome supernovae and gamma-ray bursts are thought to accompany a black hole formation. In the process of a black hole formation, a central core becomes hot and dense enough for hyperons and quarks to appear. In this study, we perform neutrino-radiation hydrodynamical simulations of a stellar core collapse and black hole formation taking into account such exotic components. In our computation, general relativity is fully considered under spherical symmetry. As a result, we find that the additional degrees of freedom soften the equation of state of matter and promote the black hole formation. Furthermore, their effects are detectable as a neutrino signal. We believe that the properties of hot and dense matter at extreme conditions are essential for the studies on the astrophysical black hole formation. This study will be hopefully a first step toward a physics of the central engine of gamma-ray bursts.


2017 ◽  
Vol 14 (S339) ◽  
pp. 33-38
Author(s):  
S. Justham

AbstractExplosive stellar transients arise from diverse situations, including deaths of massive stars, a variety of thermonuclear outbursts, and compact-object mergers. Stellar interactions are heavily implicated in explaining the observed populations of events, and not only those where binarity is obviously involved. Relationships between these classes probably help to elucidate our understanding; for example; the production of double neutron-star mergers from field binaries is thought to be heavily biased towards routes involving stripped core-collapse supernovæ. As we gain an ever more synoptic view of the changing sky, theorists should be mindful of developing an ability to take robust quantitative advantage of the available population information to help constrain the physics. This is complementary to aiming for deep understanding of individual events.


2019 ◽  
Vol 488 (2) ◽  
pp. 2825-2835 ◽  
Author(s):  
Giacomo Fragione ◽  
Nathan W C Leigh ◽  
Rosalba Perna

ABSTRACT Nuclear star clusters that surround supermassive black holes (SMBHs) in galactic nuclei are thought to contain large numbers of black holes (BHs) and neutron stars (NSs), a fraction of which form binaries and could merge by Kozai–Lidov oscillations (KL). Triple compact objects are likely to be present, given what is known about the multiplicity of massive stars, whose life ends either as an NS or a BH. In this paper, we present a new possible scenario for merging BHs and NSs in galactic nuclei. We study the evolution of a triple black hole (BH) or neutron star (NS) system orbiting an SMBH in a galactic nucleus by means of direct high-precision N-body simulations, including post-Newtonian terms. We find that the four-body dynamical interactions can increase the KL angle window for mergers compared to the binary case and make BH and NS binaries merge on shorter time-scales. We show that the merger fraction can be up to ∼5–8 times higher for triples than for binaries. Therefore, even if the triple fraction is only ∼10–$20\rm{\,per\,cent}$ of the binary fraction, they could contribute to the merger events observed by LIGO/VIRGO in comparable numbers.


Sign in / Sign up

Export Citation Format

Share Document