scholarly journals Astrometry with the Space Telescope Wide-Field/Planetary Camera

1983 ◽  
Vol 62 ◽  
pp. 246-253
Author(s):  
W. A. Baum

Although the Space Telescope Wide-Field/Planetary Camera is not primarily an astrometric instrument, it is expected to have some astrometric capability. Moreover, one of its possible astrometric applications is of unusually high scientific importance, namely, an attempt to detect the presence of planets around nearby stars. Let me therefore adopt that application as an example for discussing the anticipated astrometric performance of the camera system. It will be expeditious to make use of some diagrams that I have presented previously elsewhere, so part of the story may sound familiar (Baum 1979a, 1979b, 1980a, 1980b; Baum, Thomsen, and Kreidl 1981).

1992 ◽  
Vol 135 ◽  
pp. 365-368
Author(s):  
William A. Baum

AbstractOwing to the spherical aberration of the Hubble Space Telescope, prospects are now poor for the astrometric detection of low–mass companions of nearby stars with the Wide–Field / Planetary Camera. The installation of a new camera (WF/PC-II) incorporating an optical correction for the telescope will only partially recover the low–mass companion search capability.


2014 ◽  
Vol 785 (2) ◽  
pp. 148 ◽  
Author(s):  
Sukrit Ranjan ◽  
David Charbonneau ◽  
Jean-Michel Désert ◽  
Nikku Madhusudhan ◽  
Drake Deming ◽  
...  

2018 ◽  
Vol 620 ◽  
pp. A132 ◽  
Author(s):  
B. W. Holwerda ◽  
J. S. Bridge ◽  
R. Ryan ◽  
M. A. Kenworthy ◽  
N. Pirzkal ◽  
...  

Aims. We aim to evaluate the near-infrared colors of brown dwarfs as observed with four major infrared imaging space observatories: the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST), the Euclid mission, and the WFIRST telescope. Methods. We used the SPLAT SPEX/ISPEX spectroscopic library to map out the colors of the M-, L-, and T-type dwarfs. We have identified which color–color combination is optimal for identifying broad type and which single color is optimal to then identify the subtype (e.g., T0-9). We evaluated each observatory separately as well as the narrow-field (HST and JWST) and wide-field (Euclid and WFIRST) combinations. Results. The Euclid filters perform equally well as HST wide filters in discriminating between broad types of brown dwarfs. WFIRST performs similarly well, despite a wider selection of filters. However, subtyping with any combination of Euclid and WFIRST observations remains uncertain due to the lack of medium, or narrow-band filters. We argue that a medium band added to the WFIRST filter selection would greatly improve its ability to preselect brown dwarfs its imaging surveys. Conclusions. The HST filters used in high-redshift searches are close to optimal to identify broad stellar type. However, the addition of F127M to the commonly used broad filter sets would allow for unambiguous subtyping. An improvement over HST is one of two broad and medium filter combinations on JWST: pairing F140M with either F150W or F162M discriminates very well between subtypes.


2004 ◽  
Author(s):  
Jennifer A. Turner-Valle ◽  
Joseph Sullivan ◽  
John E. Mentzell ◽  
Robert A. Woodruff

2010 ◽  
Vol 9 (4) ◽  
pp. 265-271 ◽  
Author(s):  
W.B. Sparks ◽  
M. McGrath ◽  
K. Hand ◽  
H.C. Ford ◽  
P. Geissler ◽  
...  

AbstractEuropa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes.


1994 ◽  
Vol 107 ◽  
pp. 1904 ◽  
Author(s):  
Andrew C. Phillips ◽  
Duncan A. Forbes ◽  
Matthew A. Bershady ◽  
Garth D. Illingworth ◽  
David C. Koo

1994 ◽  
Vol 437 ◽  
pp. 67 ◽  
Author(s):  
R. E. Griffiths ◽  
K. U. Ratnatunga ◽  
L. W. Neuschaefer ◽  
S. Casertano ◽  
M. Im ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document