scholarly journals Analysis of Low-and High-Resolution Observations of High-Velocity Clouds

1989 ◽  
Vol 120 ◽  
pp. 416-423
Author(s):  
Bart P. Wakker

For almost three decades neutral hydrogen moving at velocities unexplicable by galactic rotation has been observed. These so-called high-velocity clouds (HVCs) have been invoked as evidence for infall of neutral gas to the galaxy, as manifestations of a galactic fountain, as energy source for the formation of supershells, etc. No general consensus about their origin has presently been reached. However, it is becoming clear that no single model will suffice to explain all HVCs. A number of clouds may consist of material streaming toward the galactic center, as Mirabel (this conference) has advocated for several years, though their origin still remains unclear. A better understanding is mainly hampered by the fact that the distance remains unknown. An overview of the current status of the distance problem is given by van Woerden elsewhere in this volume.

1991 ◽  
Vol 144 ◽  
pp. 27-40 ◽  
Author(s):  
B.P. Wakker

This contribution describes high-velocity clouds (HVCs), neutral hydrogen moving with velocities inexplicable by differential galactic rotation. They have been invoked as evidence for infall of gas to the Galaxy, as manifestations of a galactic fountain, as energy source for the formation of supershells, etc. It is becoming clear that a single model will not suffice to explain all HVCs. A better understanding is mainly hampered by the fact that the distance remains unknown. Many aspects to the study of HVCs will be discussed here.


1974 ◽  
Vol 60 ◽  
pp. 599-616
Author(s):  
R. D. Davies

A review is given of the observations of neutral hydrogen high velocity clouds (|ν| > 80 km s−1) in and near the Galaxy. The positive and negative clouds are seen to have different distributions in the sky, following roughly the velocity pattern of galactic rotation. A characteristic of the majority of the clouds is their distribution in elongated bands or strings. The various theories of origin of HVCs are discussed; the possible role of the tidal interactions between the Magellanic Clouds and the Galaxy is emphasized. Tests are suggested to distinguish between the Oort theory of the infall of intergalactic material and theories which envisage the HVCs as originating in the outermost spiral structure.


1967 ◽  
Vol 31 ◽  
pp. 291-293
Author(s):  
I. S. Šklovskij

It is suggested that the neutral hydrogen atoms in clouds with high negative velocities observed at high galactic latitudes may, when moving towards a galactic H 11 region, be excited by radiation in the red wing of the Lyman-α profile. The steepness of this wing may cause a population inversion of the hyperfine-structure levels. Consequently, estimates of the hydrogen density in the high-velocity clouds, and of the flow of matter towards the galactic plane (or into the Galaxy), when based on the assumption of collisional excitation, may be too high by two orders of magnitude.


1995 ◽  
Vol 164 ◽  
pp. 129-132
Author(s):  
Felix J. Lockman

Early observers measuring 21 cm HI profiles away from the Galactic plane found not only the emission near zero velocity expected from gas in the immediate vicinity of the Sun, but also occasional emission at velocities reaching several hundred km s−1. It seemed unlikely that these spectral lines could come from gas in normal galactic rotation (they are sometimes found at |b| > 45°), and so began the puzzle of “high-velocity clouds” (HVCs). The early result that all HVCs had negative velocity implying that they were infalling was soon shown to be incorrect with the discovery of many positive velocity clouds in the southern hemisphere. Attempts to determine the distance to HVCs by searching for them in absorption against stars yielded only lower limits, typically > 1 kpc. By 1984 several large-scale surveys had established that a significant fraction of the sky was covered with high velocity HI (e.g., Oort, 1966; Giovanelli, 1980). A recent major review is by Wakker (1991a; see also van Woerden, 1993). For this brief presentation to a specialized audience, I will concentrate on issues that may be relevant to the topic of stellar populations.


2004 ◽  
Vol 217 ◽  
pp. 130-135
Author(s):  
Felix J. Lockman

New 21cm observations with the Green Bank Telescope show that a significant fraction of the HI in the inner Galaxy's halo ~ 1 kpc from the midplane exists in the form of discrete clouds. Some look very much like a Spitzer (1968) “standard” diffuse cloud but with their HI in two phases. They mark the transition between the neutral disk and the highly ionized halo. The dominant motion of the clouds is Galactic rotation, but some have random velocities of as much as 50 km s−1. They are part of the Galaxy and are not related to high-velocity clouds, yet their origin is obscure.


1998 ◽  
Vol 11 (1) ◽  
pp. 86-89
Author(s):  
Ulysses J. Sofia

Abstract The well measured gas-phase abundances in the low halo suggest that this region of the Galaxy has total (gas plus dust) metal abundances which are close to those in the solar neighborhood. The gas-phase abundances in the halo are generally higher than those seen in the disk, however, this affect is likely due to the destruction of dust in the halo clouds. Observations of high velocity clouds (HVCs) in the halo suggest that these clouds have metal abundances which are substantially lower than those measured for the local interstellar medium. These determinations, however, are often of lower quality than those for the low halo because of uncertainties in the hydrogen abundances along the sightlines, in the incorporation of elements into dust, and in the partial ionization of the clouds.


2000 ◽  
Vol 174 ◽  
pp. 403-407
Author(s):  
Igor’ I. Nikiforov

Kinematic data from neutral hydrogen observations provide information to solve the interdependent problems of the determination of the main Galactic constants (the Solar-Galactic center distance R0, the Oort constant A and others) and the Galactic rotation curve (Nikiforov & Petrovskaya 1994, hereafter NP94, and references therein). However, in the standard method for finding R0 by comparing the rotations of HI clouds and some other objects (typically HII regions/CO clouds), the kinematic model, constructed typically solely from HI data, is considered to be the same for both galactic subsystems (e.g. Merrifield 1992). In practice a discrepancy between their rotation curves can produce strongly erroneous results (Merrifield 1992, NP94). Establishing the common rotation law from HI plus HII/CO data in NP94 is only a part of attacking the problem.


2004 ◽  
Vol 217 ◽  
pp. 2-11 ◽  
Author(s):  
B. P. Wakker

I examine some of the evidence relevant to the idea that high-velocity clouds (HVCs) are gas clouds distributed throughout the Local Group, as proposed by Blitz et al. (1999) and Braun & Burton (1999). This model makes several predictions: a) the clouds have low metallicities; b) there should be no detectable Hα emission; c) analogues near other galaxies should exist; and d) many faint HVCs in the region around M 31 can be found. Low metallicities are indeed found in several HVCs, although they are also expected in several other models. Hα emission detected in most HVCs and, when examined more closely, distant (D>200 kpc) HVCs should be almost fully ionized, implying that most HVCs with H I must lie near the Milky Way. No clear extragalactic analogues have been found, even though the current data appear sensitive enough. The final prediction (d) has not yet been tested. on balance there appears to be no strong evidence for neutral gas clouds distributed throughout the Local Group, but there may be many such clouds within 100 or so kpc from the Milky Way (and M31). on the other hand, some (but not all) of the high-velocity O VI recently discovered may originate in hot gas distributed throughout the Local Group.


1996 ◽  
Vol 173 ◽  
pp. 175-176
Author(s):  
K.C. Freeman

From their rotation curves, most spiral galaxies appear to have massive dark coronas. The inferred masses of these dark coronas are typically 5 to 10 times the mass of the underlying stellar component. I will review the evidence that our Galaxy also has a dark corona. Our position in the galactic disk makes it difficult to measure the galactic rotation curve beyond about 20 kpc from the galactic center. However it does allow several other indicators of the total galactic mass out to very large distances. It seems clear that the Galaxy does indeed have a massive dark corona. The data indicate that the enclosed mass within radius R increases like M(R) ≈ R(kpc) × 1010M⊙, out to a radius of more than 100 kpc. The total galactic mass is at least 12 × 1011M⊙.


Sign in / Sign up

Export Citation Format

Share Document