scholarly journals Milky Way Rotation Models from Neutral Hydrogen and Molecular Clouds: Galactic Constants, Common Details and Differences

2000 ◽  
Vol 174 ◽  
pp. 403-407
Author(s):  
Igor’ I. Nikiforov

Kinematic data from neutral hydrogen observations provide information to solve the interdependent problems of the determination of the main Galactic constants (the Solar-Galactic center distance R0, the Oort constant A and others) and the Galactic rotation curve (Nikiforov & Petrovskaya 1994, hereafter NP94, and references therein). However, in the standard method for finding R0 by comparing the rotations of HI clouds and some other objects (typically HII regions/CO clouds), the kinematic model, constructed typically solely from HI data, is considered to be the same for both galactic subsystems (e.g. Merrifield 1992). In practice a discrepancy between their rotation curves can produce strongly erroneous results (Merrifield 1992, NP94). Establishing the common rotation law from HI plus HII/CO data in NP94 is only a part of attacking the problem.

2012 ◽  
Vol 8 (S289) ◽  
pp. 444-447 ◽  
Author(s):  
Zi Zhu ◽  
Ming Shen

AbstractBased on radial velocity data and Hipparcos proper motions, we present a new determination of the Galactocentric distance based on a purely kinematic model. We have selected three subgroups of Galactic thin-disk components (O–B5 stars, classical Cepheids and Galactic open clusters) to trace the local structure and kinematics of the Galactic disk. Adopting the approximation of axisymmetric circular rotation, we have derived the Sun's distance to the Galactic Center, R0 = 8.25 ± 0.79 kpc based on O–B5 stars, R0 = 7.98 ± 0.79 kpc based on Galactic Cepheids and R0 = 8.03 ± 0.70 kpc using open clusters, all of which are in excellent agreement with the current-best estimate of the Galactocentric distance.


1996 ◽  
Vol 173 ◽  
pp. 175-176
Author(s):  
K.C. Freeman

From their rotation curves, most spiral galaxies appear to have massive dark coronas. The inferred masses of these dark coronas are typically 5 to 10 times the mass of the underlying stellar component. I will review the evidence that our Galaxy also has a dark corona. Our position in the galactic disk makes it difficult to measure the galactic rotation curve beyond about 20 kpc from the galactic center. However it does allow several other indicators of the total galactic mass out to very large distances. It seems clear that the Galaxy does indeed have a massive dark corona. The data indicate that the enclosed mass within radius R increases like M(R) ≈ R(kpc) × 1010M⊙, out to a radius of more than 100 kpc. The total galactic mass is at least 12 × 1011M⊙.


1989 ◽  
Vol 120 ◽  
pp. 416-423
Author(s):  
Bart P. Wakker

For almost three decades neutral hydrogen moving at velocities unexplicable by galactic rotation has been observed. These so-called high-velocity clouds (HVCs) have been invoked as evidence for infall of neutral gas to the galaxy, as manifestations of a galactic fountain, as energy source for the formation of supershells, etc. No general consensus about their origin has presently been reached. However, it is becoming clear that no single model will suffice to explain all HVCs. A number of clouds may consist of material streaming toward the galactic center, as Mirabel (this conference) has advocated for several years, though their origin still remains unclear. A better understanding is mainly hampered by the fact that the distance remains unknown. An overview of the current status of the distance problem is given by van Woerden elsewhere in this volume.


1980 ◽  
Vol 87 ◽  
pp. 213-220 ◽  
Author(s):  
Leo Blitz ◽  
Michel Fich ◽  
Antony A. Stark

The major stumbling block in the determination of a rotation curve beyond the solar circle has been the lack of a suitable set of objects with well defined and independently measured distances and velocities which can be observed to large galactocentric radii. Two things have changed this situation. The first was the realization that essentially all local HII regions have associated molecular material. The second was the acquisition of reliable distances to the stars exciting a sizable number of HII regions at large galactocentric radii (Moffat, FitzGerald, and Jackson 1979). Because the velocity of the associated molecular gas can be measured very accurately by means of radio observations of CO, we have been able to overcome the past difficulties and have measured the rotation curve of the Galaxy to a galactocentric distance of 18 kpc.


1996 ◽  
Vol 169 ◽  
pp. 645-650
Author(s):  
K.C. Freeman

The rotation curves of spiral galaxies indicate that most of them have massive dark coronas, and it seems likely that our Galaxy also has a dark corona. Our position in the galactic disk makes it difficult to measure the galactic rotation curve beyond about 20 kpc from the galactic center, but it does allow us to use several other indicators of the total galactic mass out to very large distances. I will review some of these indicators. The conclusion is that the Galaxy does indeed have a massive dark corona: the data are consistent with the enclosed mass within radius R increasing like M(R) ≈ R(kpc) × 1010M⊙, out to a radius of more than 100 kpc, and a total galactic mass of at least 12 × 1011M⊙.


Author(s):  
James O Chibueze ◽  
Toshihiro Omodaka ◽  
Riku Urago ◽  
Takumi Nagayama ◽  
Jibrin A Alhassan ◽  
...  

Abstract Using the VLBI Exploration of Radio Astrometry (VERA), we measured the trigonometric parallax of an H2O maser source in a variable star of Mira Cet type, Y Lib, to be 0.855 ± 0.050 mas, corresponding to a distance of 1.17 ± 0.07 kpc. From multi-epoch infrared observations with the Kagoshima University 1 m telescope, we derived the mean J, H, and K′-band magnitudes of Y Lib to be 4.34 ± 0.22 mag, 3.62 ± 0.18 mag, and 3.25 ± 0.16 mag, respectively. The pulsation period of Y Lib was obtained to be 277.2 ± 13.9 d. We derived the effective temperature and radius of Y Lib to be 3100 ± 125 K and $211 \pm 11 \, R_{\odot }$, respectively. The peculiar motion of Y Lib Us (motion towards the Galactic center), Vs (motion in the direction of Galactic rotation), and Ws (motion towards the Galactic North Pole) were obtained to be −16 ± 3 km s−1, 25 ± 2 km s−1, and 13 ± 3 km s−1, respectively. After validation, we used the new release of the GALactic ORbit simulation package to trace the past 1 Gyr orbit of Y Lib in the Milky Way. Fitting the orbit of Y Lib with the MWPotential2014 Galactic Potential model produced high eccentricity in the direction perpendicular to the Galactic center, but decreasing the Miyamoto–Nagai disk potential contribution in the Milky Way model produced a reasonable result of the Y Lib orbit.


2020 ◽  
Vol 494 (3) ◽  
pp. 4291-4313 ◽  
Author(s):  
Marius Cautun ◽  
Alejandro Benítez-Llambay ◽  
Alis J Deason ◽  
Carlos S Frenk ◽  
Azadeh Fattahi ◽  
...  

ABSTRACT We determine the Milky Way (MW) mass profile inferred from fitting physically motivated models to the Gaia DR2 Galactic rotation curve and other data. Using various hydrodynamical simulations of MW-mass haloes, we show that the presence of baryons induces a contraction of the dark matter (DM) distribution in the inner regions, r ≲ 20 kpc. We provide an analytic expression that relates the baryonic distribution to the change in the DM halo profile. For our galaxy, the contraction increases the enclosed DM halo mass by factors of roughly 1.3, 2, and 4 at radial distances of 20, 8, and 1 kpc, respectively compared to an uncontracted halo. Ignoring this contraction results in systematic biases in the inferred halo mass and concentration. We provide a best-fitting contracted NFW halo model to the MW rotation curve that matches the data very well.1 The best-fit has a DM halo mass, $M_{200}^{\rm DM}=0.97_{-0.19}^{+0.24}\times 10^{12}\,\mathrm{M}_\odot$, and concentration before baryon contraction of $9.4_{-2.6}^{+1.9}$, which lie close to the median halo mass–concentration relation predicted in ΛCDM. The inferred total mass, $M_{200}^{\rm total}=1.08_{-0.14}^{+0.20} \times 10^{12}\,\mathrm{M}_\odot$, is in good agreement with recent measurements. The model gives an MW stellar mass of $5.04_{-0.52}^{+0.43}\times 10^{10}\,\mathrm{M}_\odot$ and infers that the DM density at the Solar position is $\rho _{\odot }^{\rm DM}=8.8_{-0.5}^{+0.5}\times 10^{-3}\,\mathrm{M}_\odot \,\mathrm{pc}^{-3}\equiv 0.33_{-0.02}^{+0.02}\,\rm {GeV}\,\rm {cm}^{-3}$. The rotation curve data can also be fitted with an uncontracted NFW halo model, but with very different DM and stellar parameters. The observations prefer the physically motivated contracted NFW halo, but the measurement uncertainties are too large to rule out the uncontracted NFW halo.


1970 ◽  
Vol 38 ◽  
pp. 397-414 ◽  
Author(s):  
W. B. Burton ◽  
W. W. Shane

Observations of the neutral hydrogen in the first quadrant of galactic longitude have been analysed. The existence of large-scale streaming motions such as the streaming associated with the Sagittarius arm makes interpretation of the observations in terms of circular galactic rotation unsatisfactory. It is shown that application of the density-wave theory formulated by Lin et al. (1969) leads to a more satisfactory interpretation. Using kinematic models based on this theory the distribution and motion of the neutral hydrogen are studied. Failures of kinematic models based on circular rotation are pointed out. A map of the distribution of neutral hydrogen is produced. The Scutum arm is composed of inner and outer arcs both of which seem to be moving outward from the galactic center with velocities of the order of 30 km s−1.


1993 ◽  
Vol 153 ◽  
pp. 353-354
Author(s):  
I.V. Petrovskaya ◽  
S. Ninković

It is not always clear what the bulge of the Galaxy is: a region close to the centre, a subsystem formed by a distinct population, or a mixture of populations but characterised by its own mass distribution. We consider the bulge of the Milky Way as a subsystem and thus contributing to the galactic gravitation field. We want to estimate the contribution of the galactic bulge to the rotation curve.


Sign in / Sign up

Export Citation Format

Share Document