scholarly journals The S2 Baseband Processing System for Phase-coherent Pulsar Observations

1996 ◽  
Vol 160 ◽  
pp. 21-22
Author(s):  
R. Wietfeldt ◽  
W. Van Straten ◽  
D. Del Rizzo ◽  
N. Bartel ◽  
W. Cannon ◽  
...  

AbstractThe phase-coherent recording of pulsar data and subsequent software dispersion removal provide a flexible way to reach the limits of high time resolution, useful for more precise pulse timing and the study of fast signal fluctuations within a pulse. Because of the huge data rate and lack of adequate recording and computing capabilities, this technique has been used mostly only for small pulsar data sets. In recent years, however, the development of very capable, reasonably inexpensive high-speed recording systems and computers has made feasible the notion of pulsar baseband recording and subsequent processing with a workstation/computer. In this paper we discuss the development of a phase-coherent baseband processing system for radio pulsar observations. This system is based on the S2 VLBI recorder developed at ISTS/York University in Toronto, Canada. We present preliminary first results for data from the Vela pulsar, obtained at Parkes, Australia, and processed at ISTS/York University, and discuss plans for future developments.

2016 ◽  
Vol 05 (04) ◽  
pp. 1641007 ◽  
Author(s):  
D. C. Price ◽  
L. Staveley-Smith ◽  
M. Bailes ◽  
E. Carretti ◽  
A. Jameson ◽  
...  

HIPSR (HI-Pulsar) is a digital signal processing system for the Parkes 21-cm Multibeam Receiver that provides larger instantaneous bandwidth, increased dynamic range, and more signal processing power than the previous systems in use at Parkes. The additional computational capacity enables finer spectral resolution in wideband HI observations and real-time detection of Fast Radio Bursts during pulsar surveys. HIPSR uses a heterogeneous architecture, consisting of FPGA-based signal processing boards connected via high-speed Ethernet to high performance compute nodes. Low-level signal processing is conducted on the FPGA-based boards, and more complex signal processing routines are conducted on the GPU-based compute nodes. The development of HIPSR was driven by two main science goals: to provide large bandwidth, high-resolution spectra suitable for 21-cm stacking and intensity mapping experiments; and to upgrade the Berkeley–Parkes–Swinburne Recorder (BPSR), the signal processing system used for the High Time Resolution Universe (HTRU) Survey and the Survey for Pulsars and Extragalactic Radio Bursts (SUPERB).


A strategy of examining immense dimensions of structured, un-structured, Semi-Structured data sets is referred as Big data Analytics. Streaming Big Data refers to data generated continuously from number of data sources like Internet-of-Things (IoT) devices, mobile applications, Embedded Sensors, web clicks and many more are needed to be store, processed and analyzed in a tiny interval of time in order to extract meaningful insights and take proper decisions in a timely fashion as the necessity arises. However analyzing streaming big data (continuous flow or unbounded data) is a very challenging problem. Continuous data streams have become essential prerequisite for numerous industrial and scientific applications, the current existing technology Hadoop-MapReduce is not appropriate for stream processing of big data. This paper discusses the challenges and benefits of streaming big data along with its architecture, and focuses on different open source streaming processing platforms that are existed to process the huge data at a high speed


2006 ◽  
Vol 22 (8) ◽  
pp. 1004-1010 ◽  
Author(s):  
Andrei Hutanu ◽  
Gabrielle Allen ◽  
Stephen D. Beck ◽  
Petr Holub ◽  
Hartmut Kaiser ◽  
...  

Author(s):  
Patrick Nau ◽  
Zhiyao Yin ◽  
Oliver Lammel ◽  
Wolfgang Meier

Phosphor thermometry has been developed for wall temperature measurements in gas turbines and gas turbine model combustors. An array of phosphors has been examined in detail for spatially and temporally resolved surface temperature measurements. Two examples are provided, one at high pressure (8 bar) and high temperature and one at atmospheric pressure with high time resolution. To study the feasibility of this technique for full-scale gas turbine applications, a high momentum confined jet combustor at 8 bar was used. Successful measurements up to 1700 K on a ceramic surface are shown with good accuracy. In the same combustor, temperatures on the combustor quartz walls were measured, which can be used as boundary conditions for numerical simulations. An atmospheric swirl-stabilized flame was used to study transient temperature changes on the bluff body. For this purpose, a high-speed setup (1 kHz) was used to measure the wall temperatures at an operating condition where the flame switches between being attached (M-flame) and being lifted (V-flame) (bistable). The influence of a precessing vortex core (PVC) present during M-flame periods is identified on the bluff body tip, but not at positions further inside the nozzle.


2015 ◽  
Vol 719-720 ◽  
pp. 534-537
Author(s):  
Wen Hua Ye ◽  
Huan Li

With the development of digital signal processing technology, the demand on the signal processor speed has become increasingly high. This paper describes the hardware design of carrier board in high-speed signal processing module, which using Xilinx's newest Virtex-7 FPGA family XC7VX485T chip, and applying high-speed signal processing interface FMC to transport and communicate high-speed data between carrier board and daughter card with high-speed ADC and DAC. This design provides a hardware implementation and algorithm verification platform for high-speed digital signal processing system.


2018 ◽  
Vol 89 (16) ◽  
pp. 3401-3410 ◽  
Author(s):  
Hong Liu ◽  
R Hugh Gong ◽  
Pinghua Xu ◽  
Xuemei Ding ◽  
Xiongying Wu

Textile motion in a front-loading washer has been characterized via video capturing, and a processing system developed based on image geometric moment. Textile motion significantly contributes to the mass transfer of the wash solution in porous materials, particularly in the radial direction (perpendicular to the rotational axis of the inner drum). In this paper, the velocity profiles and residence time distributions of tracer textiles have been investigated to characterize the textile dynamics in a front-loading washer. The results show that the textile motion varies significantly with the water volume and rotational speed, and that the motion path follows certain patterns. Two regions are observed in the velocity plots: a passive region where the textile moves up with low velocity and an active region where the textile falls down with relatively high speed. A stagnant area in the residence time profile is observed. This corresponds to the passive region in the velocity profile. The stagnant area affects the mechanical action, thus influencing washing efficiency and textile performance. The findings on textile dynamics will help in the development of better front-loading washers.


2012 ◽  
Vol 198-199 ◽  
pp. 1246-1249
Author(s):  
Sheng Hu Liu ◽  
Ya Min Xing

This electronic Logging while drilling (LWD) is a new sort of well drilling technology developed in recent years. As to the traditional cable borehole survey, the LWD method has many advantages because of its higher accuracy, higher geologic strata resolution capacity, much less time and cost. To meet the current logging technology needs, A data acquisition and processing system for logging while drilling is designed.It minutely introduces the collection system structure, acquisition Program, the digital design of LWD and discusses the design and the implementation of each functional module.The system which designed on the basis of the high precise DSP and FPGA implements signal pretreatment, high speed A/D control and digitalization of the phase sensitive demodulation etc, optimizes the acquisition and processing system and supplies a new way for the development of logging while drilling.Experimental results show that system performance has attained the design requirement.


2014 ◽  
Vol 33 (6) ◽  
pp. 702-706 ◽  
Author(s):  
Yu Lian Lin ◽  
Zhi Ming Liu ◽  
Peng Sheng ◽  
Qing Long Cui ◽  
Yuan Zhe Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document