scholarly journals Gamma Ray Bursts as Death of Magnetized Neutron Stars

1996 ◽  
Vol 160 ◽  
pp. 361-362
Author(s):  
Hitoshi Hanami

AbstractWe propose magnetic cannon ball mechanism in which the collapse of a magnetosphere onto a black hole can generate strong outward Poynting flux which can drive a baryon-free fireball. This process can occur at the final collapsing phase of a neutron star with strong magnetic field. The magnetic cannon ball can drive a relativistic outflow without the rotation of the central object. This baryon-free process can explain gamma-ray bursts as the final phase of dead pulsars.

2013 ◽  
Vol 87 (8) ◽  
Author(s):  
Nicholas Stone ◽  
Abraham Loeb ◽  
Edo Berger

2016 ◽  
Vol 12 (S324) ◽  
pp. 54-61
Author(s):  
Diego Götz ◽  
Stefano Covino

AbstractWe review the current observational and theoretical status of the polarization measurements of Gamma-ray Bursts at all wavelengths. Gamma-Ray Bursts are thought to be produced by an ultra-relativistic jet, possibly powered by a black hole. One of the most important open point is the composition of the jet: the energy may be carried out from the central source either as kinetic energy (of baryons and/or pairs), or in electromagnetic form (Poynting flux). The polarization properties are expected to help disentangling main energy carrier. The prompt emission and afterglow polarization are also a powerful diagnostic of the jet geometry.


2020 ◽  
Vol 29 (11) ◽  
pp. 2041015
Author(s):  
John L. Friedman ◽  
Nikolaos Stergioulas

The first inspiral of two neutron stars observed in gravitational waves was remarkably close, allowing the kind of simultaneous gravitational wave and electromagnetic observation that had not been expected for several years. Their merger, followed by a gamma-ray burst and a kilonova, was observed across the spectral bands of electromagnetic telescopes. These GW and electromagnetic observations have led to dramatic advances in understanding short gamma-ray bursts; determining the origin of the heaviest elements; and determining the maximum mass of neutron stars. From the imprint of tides on the gravitational waveforms and from observations of X-ray binaries, one can extract the radius and deformability of inspiraling neutron stars. Together, the radius, maximum mass, and causality constrain the neutron-star equation of state, and future constraints can come from observations of post-merger oscillations. We selectively review these results, filling in some of the physics with derivations and estimates.


1999 ◽  
Vol 527 (1) ◽  
pp. L39-L42 ◽  
Author(s):  
H.-Thomas Janka ◽  
Thomas Eberl ◽  
Maximilian Ruffert ◽  
Chris L. Fryer

Author(s):  
A. R. Chasovnikov ◽  
V. M. Lipunov ◽  
E. S. Gorbovskoy

We consider the neutron stars mergers from the point of view of the spinar model. We present calculations of the maximum luminosity of merging neutron stars, both total and in optical ranges. The possibility of observing such gamma-ray bursts using the MASTER system of robotic telescopes is also discussed.


2020 ◽  
Vol 495 (1) ◽  
pp. L66-L70 ◽  
Author(s):  
Riccardo Ciolfi

ABSTRACT The connection between short gamma-ray bursts (SGRBs) and binary neutron star (BNS) mergers was recently confirmed by the association of GRB 170817A with the merger event GW170817. However, no conclusive indications were obtained on whether the merger remnant that powered the SGRB jet was an accreting black hole (BH) or a long-lived massive neutron star (NS). Here, we explore the latter case via BNS merger simulations covering up to 250 ms after merger. We report, for the first time in a full merger simulation, the formation of a magnetically driven collimated outflow along the spin axis of the NS remnant. For the system at hand, the properties of such an outflow are found largely incompatible with an SGRB jet. With due consideration of the limitations and caveats of our present investigation, our results favour a BH origin for GRB 170817A and SGRBs in general. Even though this conclusion needs to be confirmed by exploring a larger variety of physical conditions, we briefly discuss possible consequences of all SGRB jets being powered by accreting BHs.


Author(s):  
Nils Andersson

This chapter discusses the different stages of an inspiralling neutron star binary system, through the formation of a black hole and the possible emergence of a gamma-ray burst. Tidal effects and the information encoded in the so-called Love numbers are explored. The violent dynamics of the merger is considered and models of gamma-ray bursts and the late time kilonova emission are also explored.


Nature ◽  
1993 ◽  
Vol 361 (6409) ◽  
pp. 236-238 ◽  
Author(s):  
R. Mochkovitch ◽  
M. Hernanz ◽  
J. Isern ◽  
X. Martin

Sign in / Sign up

Export Citation Format

Share Document