scholarly journals Statistical Effects of Doppler Beaming and Malmquist Bias on Flux-Limited Samples of Compact Radio Sources

1998 ◽  
Vol 164 ◽  
pp. 137-138
Author(s):  
Matthew L. Lister ◽  
Alan P. Marscher

AbstractWe examine the effects of Doppler beaming on flux-limited samples of compact extragalactic radio sources using Monte Carlo simulations. We incorporate a luminosity function and z-distribution for the parent population, and investigate models in which the unbeamed synchrotron luminosity L of a relativistic jet is related to its bulk Lorentz factor Γ. The predicted flux density, redshift, monochromatic luminosity, and apparent velocity distributions of our simulated flux-limited samples are compared to the Caltech-Jodrell Bank (CJF) sample of flat-spectrum, radio core-dominated active galactic nuclei (AGNs).We find that a relation between L and Γ is not needed to reproduce the characteristics of the CJF sample. Introducing a positive correlation between these quantities results in an underabundance of objects with high viewing angles, while a negative correlation gives generally poor fits to the data.

2014 ◽  
Vol 28 ◽  
pp. 1460177
Author(s):  
LUCIE GÉRARD ◽  
GILLES HENRI ◽  
SANTIAGO PITA ◽  
MICHAEL PUNCH

In the framework of Active Galactic Nuclei (AGN) unification, BL Lacs and their parent population would share the same intrinsic characteristics, the observational differences being due to the orientation of the relativistic jet compared to the line of sight. BL Lacs would be the objects whose jet is oriented towards us, their emission being amplified by the relativistic Doppler boosting. Constraints arising from fast variability and/or large optical depth to pair production commonly imply large Lorentz factors. The growing number of BL Lacs detected at HE (> 100 MeV) and VHE (> 100 GeV) is a challenge for this unification scheme. Indeed, the high values of Doppler factor needed in the simplest radiative model to explain the emission of these sources imply a large density for the parent population. A possible solution to this Doppler factor crisis lies in considering different geometries for the jet. In this study, we use the BL Lacs detected at HE and VHE to investigate the intrinsic properties of the associated parent population. Using the results presented in Fermi's second AGN catalog and performing MC simulations of the parent population, we constrain the jet parameters: its intrinsic luminosity, Lorentz factor and geometric opening angle. The simulated density of parent population and Doppler factors of the objects detectable at HE within this population are presented according to the jet parameters.


2001 ◽  
Vol 205 ◽  
pp. 18-19
Author(s):  
David L. Meier

I review recent numerical and analytic work on the magnetohydrodynamic (MHD) model of jet formation in active galactic nuclei, with an emphasis on producing the highly relativistic outflows and high radio luminosities observed in the most powerful sources.


1997 ◽  
Vol 163 ◽  
pp. 667-671
Author(s):  
Shinji Koide ◽  
Kazunari Shibata ◽  
Takahiro Kudoh

AbstractRecently, superluminal motions are observed not only from active galactic nuclei but also in our Galaxy. These phenomena are explained as relativistic jets propagating almost toward us with Lorentz factor more than 2. For the formation of such a relativistic jet, magnetically driven mechanism around a black hole is most promising. We have extended the 2.5D Newtonian MHD jet model (Shibata & Uchida 1986) to general relativistic regime. For this purpose, we have developed a general relativistic magnetohydrodynamic (GRMHD) numerical code and applied it to the simulation of the magnetized accretion disk around a black hole. We have found the formation of magnetically driven jets with 86 percent of light velocity (i.e. Lorentz factor ~ 2.0).


2019 ◽  
Vol 15 (S356) ◽  
pp. 375-375
Author(s):  
Sarah White

AbstractLow-frequency radio emission allows powerful active galactic nuclei (AGN) to be selected in a way that is unaffected by dust obscuration and orientation of the jet axis. It also reveals past activity (e.g. radio lobes) that may not be evident at higher frequencies. Currently, there are too few “radio-loud” galaxies for robust studies in terms of redshift-evolution and/or environment. Hence our use of new observations from the Murchison Widefield Array (the SKA-Low precursor), over the southern sky, to construct the GLEAM 4-Jy Sample (1,860 sources at S151MHz > 4 Jy). This sample is dominated by AGN and is 10 times larger than the heavily relied-upon 3CRR sample (173 sources at S178MHz > 10 Jy) of the northern hemisphere. In order to understand how AGN influence their surroundings and the way galaxies evolve, we first need to correctly identify the galaxy hosting the radio emission. This has now been completed for the GLEAM 4-Jy Sample – through repeated visual inspection and extensive checks against the literature – forming a valuable, legacy dataset for investigating relativistic jets and their interplay with the environment.


Universe ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 15
Author(s):  
Xiang Liu ◽  
Xin Wang ◽  
Ning Chang ◽  
Jun Liu ◽  
Lang Cui ◽  
...  

Two dozens of radio loud active galactic nuclei (AGNs) have been observed with Urumqi 25 m radio telescope in order to search for intra-day variability (IDV). The target sources are blazars (namely flat spectrum radio quasars and BL Lac objects) which are mostly selected from the observing list of RadioAstron AGN monitoring campaigns. The observations were carried out at 4.8 GHz in two sessions of 8–12 February 2014 and 7–9 March respectively. We report the data reduction and the first results of observations. The results show that the majority of the blazars exhibit IDV in 99.9% confidence level, some of them show quite strong IDV. We find the strong IDV of blazar 1357 + 769 for the first time. The IDV at centimeter-wavelength is believed to be predominately caused by the scintillation of blazar emission through the local interstellar medium in a few hundreds parsecs away from Sun. No significant correlation between the IDV strength and either redshift or Galactic latitude is found in our sample. The IDV timescale along with source structure and brightness temperature analysis will be presented in a forthcoming paper.


2010 ◽  
Vol 710 (1) ◽  
pp. 698-705 ◽  
Author(s):  
Minh T. Huynh ◽  
Ray P. Norris ◽  
Brian Siana ◽  
Enno Middelberg

2019 ◽  
Vol 628 ◽  
pp. A56 ◽  
Author(s):  
M. A. Keim ◽  
J. R. Callingham ◽  
H. J. A. Röttgering

Extragalactic peaked-spectrum radio sources are thought to be the progenitors of larger, radio-loud active galactic nuclei (AGN). Synchrotron self-absorption (SSA) has often been identified as the cause of their spectral peak. The identification of new megahertz-peaked spectrum sources from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey provides an opportunity to test how radio sources with spectral peaks below 1 GHz fit within this evolutionary picture. We observed six peaked-spectrum sources selected from the GLEAM survey, three that have spectral characteristics which violate SSA and three that have spectral peaks below 230 MHz, with the Very Long Baseline Array at 1.55 and 4.96 GHz. We present milliarcsecond resolution images of each source and constrain their morphology, linear size, luminosity, and magnetic field strength. Of the sources that are resolved by our study, the sources that violate SSA appear to be compact doubles, while the sources with peak frequencies below 230 MHz have core-jet features. We find that all of our sources are smaller than expected from SSA by factors of ≳20. We also find that component magnetic field strengths calculated from SSA are likely inaccurate, differing by factors of ≳5 from equipartition estimates. The calculated equipartition magnetic field strengths more closely resemble estimates from previously studied gigahertz-peaked spectrum sources. Exploring a model of the interaction between jets and the interstellar medium, we demonstrate that free-free absorption (FFA) can accurately describe the linear sizes and peak frequencies of our sources. Our findings support the theory that there is a fraction of peaked-spectrum sources whose spectral peaks are best modeled by FFA, implying our understanding of the early stages of radio AGN is incomplete.


Author(s):  
Zhiyuan Pei ◽  
Junhui Fan ◽  
Jianghe Yang ◽  
Denis Bastieri

Abstract Blazars are a subclass of active galactic nuclei with extreme observation properties, which is caused by the beaming effect, expressed by a Doppler factor ( $\delta$ ), in a relativistic jet. Doppler factor is an important parameter in the blazars paradigm to indicate all of the observation properties, and many methods were proposed to estimate its value. In this paper, we present a method following Mattox et al. to calculate the lower limit on $\gamma$ -ray Doppler factor ( $\delta_{\gamma}$ ) for 809 selected Fermi/LAT-detected $\gamma$ -ray blazars by adopting the available $\gamma$ -ray and X-ray data. Our sample included 342 flat-spectrum radio quasars (FSRQs) and 467 BL Lac objects (BL Lacs), out of which 507 sources are compiled with available radio core-dominance parameter (R) from our previous study. Our calculation shows that the average values of the lower limit on $\delta_{\gamma}$ for FSRQs and BL Lacs are $\left\langle\delta_{\gamma}|_{\textrm{FSRQ}}\right\rangle = 6.87 \pm 4.07$ and $\left\langle\delta_{\gamma}|_{\textrm{BL\ Lac}}\right\rangle=4.31 \pm 2.97$ , respectively. We compare and discuss our results with those from the literature. We found that the derived lower limit on $\delta_{\gamma}$ for some sources is higher than that from the radio estimation, which could be possibly explained by the jet bending within those blazars. Our results also suggest that the $\gamma$ -ray and radio regions perhaps share the same relativistic effects. The $\gamma$ -ray Doppler factor has been found to be correlated with both the $\gamma$ -ray luminosity and core-dominance parameter, implying that the jet is possibly continuous in the $\gamma$ -ray bands, and R is perhaps an indicator for a beaming effect.


1988 ◽  
Vol 129 ◽  
pp. 23-24
Author(s):  
M. H. Cohen ◽  
P. D. Barthel ◽  
T. J. Pearson ◽  
J. A. Zensus

The μ–z diagram (Figure 1) plots the observed internal proper motion μ versus redshift z for 32 extragalactic radio sources associated with active galactic nuclei. The observed points fall below an upper bound which decreases with redshift; there is a statistically significant anticorrelation between redshift and internal proper motion.


Sign in / Sign up

Export Citation Format

Share Document