scholarly journals Secular Perturbations near Mean Motion Resonances

1999 ◽  
Vol 172 ◽  
pp. 427-428
Author(s):  
A.A. Christou

In this work we attempt to make progress into assessing the importance of secular interactions between planetary satellites. In recent years, discrepancies have been observed in the expected positions of small planetary satellites (Bosh & Rivkin, 1996; Roddier et al., 1998). The existing ephemerides-producing algorithms for these objects assume fixed, elliptical and inclined orbits whose rate of precession is determined by oblateness alone. Even though the masses of these satellites are quite small relative to the planet (∼ 10−9 – 10−10) their small mutual separations and the existence of much larger satellites further out leaves open the possibility that in some cases at least the fixed-orbit assumption is only a crude approximation to reality. Two important dynamical mechanisms through which these orbits may evolve are resonant or secular interactions. In order to explore the possibility of the latter we have set up a simple planar system where an satellite in a circular orbit around a spherical planet is perturbing a massless particle which moves in proximity to various mean motion resonances. We aim to examine the effect of the resonance on the particle’s reference orbit by measuring the secular frequency. The effects of oblateness have not been taken into account as they are adequately modeled by orbit-fitting theories and can thus be readily subtracted.

2009 ◽  
Vol 103 (4) ◽  
pp. 343-364 ◽  
Author(s):  
Pavol Pástor ◽  
Jozef Klačka ◽  
Ladislav Kómar

2018 ◽  
pp. 2693-2711
Author(s):  
Alexandre C. M. Correia ◽  
Jean-Baptiste Delisle ◽  
Jacques Laskar

1992 ◽  
Vol 152 ◽  
pp. 255-268 ◽  
Author(s):  
A. Carusi ◽  
G.B. Valsecchi

The gravitational processes affecting the dynamics of comets are reviewed. At great distances from the Sun the motion of comets is primarily affected by the vertical component of the galactic field, as well as by encounters with stars and giant molecular clouds. When comets move in the region of the planets, encounters with these can strongly affect their motion. A good fraction of all periodic comets spend some time in temporary libration about mean motion resonances with Jupiter; some comets can be captured by this planet as temporary satellites. Finally, there is a small number of objects with orbital characteristics quite different from those of all other short-period comets.


Icarus ◽  
2000 ◽  
Vol 148 (1) ◽  
pp. 282-300 ◽  
Author(s):  
D. Nesvorný ◽  
F. Roig

2020 ◽  
Vol 640 ◽  
pp. L15
Author(s):  
Ayano Nakajima ◽  
Shigeru Ida ◽  
Yota Ishigaki

Context. Saturn’s mid-sized moons (satellites) have a puzzling orbital configuration with trapping in mean-motion resonances with every-other pairs (Mimas-Tethys 4:2 and Enceladus-Dione 2:1). To reproduce their current orbital configuration on the basis of a recent model of satellite formation from a hypothetical ancient massive ring, adjacent pairs must pass first-order mean-motion resonances without being trapped. Aims. The trapping could be avoided by fast orbital migration and/or excitation of the satellite’s eccentricity caused by gravitational interactions between the satellites and the rings (the disk), which are still unknown. In our research we investigate the satellite orbital evolution due to interactions with the disk through full N-body simulations. Methods. We performed global high-resolution N-body simulations of a self-gravitating particle disk interacting with a single satellite. We used N ∼ 105 particles for the disk. Gravitational forces of all the particles and their inelastic collisions are taken into account. Results. Dense short-wavelength wake structure is created by the disk self-gravity and a few global spiral arms are induced by the satellite. The self-gravity wakes regulate the orbital evolution of the satellite, which has been considered as a disk spreading mechanism, but not as a driver for the orbital evolution. Conclusions. The self-gravity wake torque to the satellite is so effective that the satellite migration is much faster than was predicted with the spiral arm torque. It provides a possible model to avoid the resonance capture of adjacent satellite pairs and establish the current orbital configuration of Saturn’s mid-sized satellites.


2021 ◽  
Vol 161 (2) ◽  
pp. 77
Author(s):  
Su Wang ◽  
D. N. C. Lin ◽  
Xiaochen Zheng ◽  
Jianghui Ji

1994 ◽  
Vol 160 ◽  
pp. 143-158 ◽  
Author(s):  
Zoran Knežević ◽  
Andrea Milani

Four perturbation theories presently used to compute asteroid proper elements are reviewed, and their results are briefly discussed (Milani and Knežević, 1990, 1992, 1994, for low to moderate eccentricity/inclination main belt objects; Lemaitre and Morbidelli, 1994, for high e, I objects; Milani, 1993, for Trojans; Schubart, 1982, 1991 for Hildas). The most important recent improvements are described, in particular those pertaining to the upgrades of the previous analytic and semianalytic solutions. The dynamical structure of the asteroid main belt, as defined by the low order mean motion resonances and by linear and nonlinear secular resonances, is considered from the point of view of the effects of these resonances on the accuracy and/or reliability of the computation of proper elements and on the reliability of the identification of asteroid families.


2014 ◽  
Vol 440 (4) ◽  
pp. 3140-3171 ◽  
Author(s):  
Krzysztof Goździewski ◽  
Cezary Migaszewski

Sign in / Sign up

Export Citation Format

Share Document