orbital migration
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 14)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nouhoum Guirou ◽  
Serge Resnikoff ◽  
Abba Kaka Hadja Yakoura ◽  
Michel Gouda ◽  
Seydou Bakayoko ◽  
...  

Abstract Background Ocular damage, including damage to the conjunctiva, lacrimal gland, eyelids, and orbit, caused by Schistosoma haematobium is sporadic. We report a clinical case of orbital migration of schistosome eggs. Case presentation A 14-year-old boy of Malian nationality presented with a painless swelling of the upper right eyelid, which had been gradually increasing for approximately 3 months. Visual acuity was logMAR 0.10 and 0.00 in the right and left eye, respectively. External examination revealed a right palpebral mass, pushing the globe slightly downward and inward. Computed tomography revealed a mass of the right lacrimal gland. Total excision of the mass was performed by transpalpebral orbitotomy. Pathological examination revealed an inflammatory granulomatous infiltrate of the lacrimal gland consisting of lymphocytes, eosinophils, giant cells, epithelioid cell, histiocytes and calcified Schistosoma eggs with terminal spine. Urine examination revealed eggs of S. haematobium. Praziquantel 40 mg/kg was administered to the patient. The hematuria stopped after 1 week. After 3 years of follow-up, no recurrence was noted. Conclusions The bilharzian granuloma of the lacrimal gland is an ectopic site of the parasite. In this case, the granuloma was cured by surgical excision followed by a course of Praziquantel.


2021 ◽  
Vol 161 (2) ◽  
pp. 70
Author(s):  
Caroline Piaulet ◽  
Björn Benneke ◽  
Ryan A. Rubenzahl ◽  
Andrew W. Howard ◽  
Eve J. Lee ◽  
...  
Keyword(s):  

2020 ◽  
Vol 903 (2) ◽  
pp. 133
Author(s):  
Amy Secunda ◽  
Jillian Bellovary ◽  
Mordecai-Mark Mac Low ◽  
K. E. Saavik Ford ◽  
Barry McKernan ◽  
...  

2020 ◽  
Author(s):  
Zijia Cui ◽  
John Papaloizou ◽  
Ewa Szuszkiewicz

<p class="western" lang="en-GB" align="justify">Past, present and forthcoming space missions (e.g. Kepler/K2, TESS, CHEOPS, JWST, PLATO, ARIEL) and ground-based observational facilities (e.g. VLT, VLTI, ALMA) were, are and will be the sources of the high quality data necessary to unveil the properties of the planetary systems. Thanks to them the recent enormous increase in number of known planets gives a unique opportunity to study the processes responsible for planet formation and evolution in more detail. The observed properties of numerous planets allow for the robust constraints to be put on planet formation models. Both ground and space-based surveys have derived distributions of fundamental planetary properties like the frequency of planets in the mass-distance and radius-distance planes, the planetary mass function, the eccentricity distribution, or the planetary mass-radius relation. Now it is possible to compare the theoretical predictions with the observed properties of the planet population as a whole. The technique used for this comparison is known as the planet population synthesis [1-4]. One of the assumptions in this method is the migration rate of the planets. At the early stages of the evolution, when planets are still embedded in a gaseous disc, the tidal interactions between the disc and planets cause the planetary orbital migration. The orbital migration may play an important role in shaping stable planetary configurations. The outcome of the simulation depends strongly on the way in which the planets migrate. An understanding of this stage of the evolution will provide insight on the most frequently formed architectures, which in turn are relevant for determining the planet habitability.</p> <p class="western" lang="en-GB" align="justify">There has been recently an important development in the understanding of the orbital migration of planets which are able to open a partial gap in the protoplanetary disc (e.g. [5], [6], and references therein). It has been shown that such planets migrate differently than it has been assumed till now [7]. This subject is now at the leading edge of the studies of the dynamical interactions that occur in newly formed planetary systems. Here, we are going to present our most recent results on the two super-Earths migrating in a gaseous protoplanetary disc.</p> <p class="western" lang="en-GB" align="justify">[1] Mordasini, C., Alibert, Y., Benz, W. (2009), Extrasolar planet population synthesis. I. Method, formation tracks, and mass-distance distribution, A&A, 501, 1139</p> <p class="western" lang="en-GB" align="justify">[2] Mordasini, C., Alibert, Y., Benz, W., Naef, D. (2009), Extrasolar planet population synthesis. II. Statisticalcomparison with observations, A&A, 501, 1139</p> <p class="western" lang="en-GB" align="justify">[3] Alibert, Y., Carron, F., Fortier, A., et al. (2013), Theoretical models of planetary system formation: mass vs. semi-major axis, A&A, 558, A109</p> <p class="western" lang="en-GB" align="justify">[4] Benz, W., Ida, S., Alibert, Y., Lin, D., & Mordasini, C. (2014), Planet Population Synthesis, Protostars and Planets VI, 691</p> <p class="western" lang="en-GB" align="justify">[5] Robert C. M. T., Crida A., Lega E., Méheut H., Morbidelli A. (2018) Toward a new paradigm for Type II migration, A&A, 617, A98</p> <p class="western" lang="en-GB" align="justify">[6] Kanagawa, K. D., Tanaka, H., & Szuszkiewicz, E, (2018), Radial migration of gap-opening planets in protoplanetary disks. I. The case of a single planet ApJ, 861, 140</p> <p class="western" lang="en-GB" align="justify">[7] Duffell, P. C., Haiman, Z., MacFadyen, A. I., D’Orazio, D. J., Farris, B. D. (2014), The Migration of  Gap-Opening Planets is not Locked to Viscous Disk Evolution , ApJL, 792, L10</p>


2020 ◽  
Vol 499 (1) ◽  
pp. 106-115
Author(s):  
Mohamad Ali-Dib ◽  
Cristobal Petrovich

ABSTRACT We investigate the origins of Kepler-419, a peculiar system hosting two nearly coplanar and highly eccentric gas giants with apsidal orientations liberating around anti-alignment, and use this system to place constraints on the properties of their birth protoplanetary disc. We follow the proposal by Petrovich, Wu, & Ali-Dib that these planets have been placed on these orbits as a natural result of the precessional effects of a dissipating massive disc and extend it by using direct N-body simulations and models for the evolution of the gas discs, including photoevaporation. Based on a parameter space exploration, we find that in order to reproduce the system the initial disc mass had to be at least 95 MJup and dissipate on a time-scale of at least 104 yr. This mass is consistent with the upper end of the observed disc masses distribution, and the dissipation time-scale is consistent with photoevaporation models. We study the properties of such discs using simplified 1D thin-disc models and show that they are gravitationally stable, indicating that the two planets must have formed via core accretion and thus prone to disc migration. We hence finally investigate the sensitivity of this mechanism to the outer planet’s semimajor axis, and find that the nearby 7:1, 8:1, and 9:1 mean-motion resonances can completely quench this mechanism, while even higher order resonances can also significantly affect the system. Assuming the two planets avoid these high-order resonances and close encounters, the dynamics seems to be rather insensitive to planet c semimajor axis, and thus orbital migration driven by the disc.


2020 ◽  
Vol 498 (3) ◽  
pp. 4005-4020
Author(s):  
Christopher E O’Connor ◽  
Dong Lai

ABSTRACT Several white dwarfs (WDs) with atmospheric metal pollution have been found to host small planetary bodies (planetesimals) orbiting near the tidal disruption radius. We study the physical properties and dynamical origin of these bodies under the hypothesis that they underwent high-eccentricity migration from initial distances of several astronomical units. We examine two plausible mechanisms for orbital migration and circularization: tidal friction and ram-pressure drag in a compact disc. For each mechanism, we derive general analytical expressions for the evolution of the orbit that can be rescaled for various situations. We identify the physical parameters that determine whether a planetesimal’s orbit can circularize within the appropriate time-scale and constrain these parameters based on the properties of the observed systems. For tidal migration to work, an internal viscosity similar to that of molten rock is required, and this may be naturally produced by tidal heating. For disc migration to operate, a minimal column density of the disc is implied; the inferred total disc mass is consistent with estimates of the total mass of metals accreted by polluted WDs.


2020 ◽  
Vol 640 ◽  
pp. L15
Author(s):  
Ayano Nakajima ◽  
Shigeru Ida ◽  
Yota Ishigaki

Context. Saturn’s mid-sized moons (satellites) have a puzzling orbital configuration with trapping in mean-motion resonances with every-other pairs (Mimas-Tethys 4:2 and Enceladus-Dione 2:1). To reproduce their current orbital configuration on the basis of a recent model of satellite formation from a hypothetical ancient massive ring, adjacent pairs must pass first-order mean-motion resonances without being trapped. Aims. The trapping could be avoided by fast orbital migration and/or excitation of the satellite’s eccentricity caused by gravitational interactions between the satellites and the rings (the disk), which are still unknown. In our research we investigate the satellite orbital evolution due to interactions with the disk through full N-body simulations. Methods. We performed global high-resolution N-body simulations of a self-gravitating particle disk interacting with a single satellite. We used N ∼ 105 particles for the disk. Gravitational forces of all the particles and their inelastic collisions are taken into account. Results. Dense short-wavelength wake structure is created by the disk self-gravity and a few global spiral arms are induced by the satellite. The self-gravity wakes regulate the orbital evolution of the satellite, which has been considered as a disk spreading mechanism, but not as a driver for the orbital evolution. Conclusions. The self-gravity wake torque to the satellite is so effective that the satellite migration is much faster than was predicted with the spiral arm torque. It provides a possible model to avoid the resonance capture of adjacent satellite pairs and establish the current orbital configuration of Saturn’s mid-sized satellites.


2020 ◽  
Vol 494 (4) ◽  
pp. 5666-5674 ◽  
Author(s):  
Shigeru Ida ◽  
Takayuki Muto ◽  
Soko Matsumura ◽  
Ramon Brasser

ABSTRACT During planet formation, gravitational interaction between a planetary embryo and the protoplanetary gas disc causes orbital migration of the planetary embryo, which plays an important role in shaping the final planetary system. While migration sometimes occurs in the supersonic regime, wherein the relative velocity between the planetary embryo and the gas is higher than the sound speed, migration prescriptions proposed thus far describing the planet–disc interaction force and the time-scales of orbital change in the supersonic regime are inconsistent with one another. Here we discuss the details of existing prescriptions in the literature and derive a new simple and intuitive formulation for planet–disc interactions based on dynamical friction, which can be applied in both supersonic and subsonic cases. While the existing prescriptions assume particular disc models, ours include the explicit dependence on the disc parameters; hence, it can be applied to discs with any radial surface density and temperature dependence (except for the local variations with radial scales less than the disc scale height). Our prescription will reduce the uncertainty originating from different literature formulations of planet migration and will be an important tool to study planet accretion processes, especially when studying the formation of close-in low-mass planets that are commonly found in exoplanetary systems.


2020 ◽  
Vol 635 ◽  
pp. L4 ◽  
Author(s):  
Yuri I. Fujii ◽  
Masahiro Ogihara

Context. Several mechanisms have been proposed to explain the formation process of satellite systems, and relatively large moons are thought to be born in circumplanetary disks. Making a single-moon system is known to be more difficult than multiple-moon or moonless systems. Aims. We aim to find a way to form a system with a single large moon, such as Titan around Saturn. We examine the orbital migration of moons, which change their direction and speed depending on the properties of circumplanetary disks. Methods. We modeled dissipating circumplanetary disks with taking the effect of temperature structures into account and calculated the orbital evolution of Titan-mass satellites in the final evolution stage of various circumplanetary disks. We also performed N-body simulations of systems that initially had multiple satellites to see whether single-moon systems remained at the end. Results. The radial slope of the disk-temperature structure characterized by the dust opacity produces a patch of orbits in which the Titan-mass moons cease inward migration and even migrate outward in a certain range of the disk viscosity. The patch assists moons initially located in the outer orbits to remain in the disk, while those in the inner orbits fall onto the planet. Conclusions. We demonstrate for the first time that systems can form that have only one large moon around giant planet. Our N-body simulations suggest satellite formation was not efficient in the outer radii of circumplanetary disks.


Sign in / Sign up

Export Citation Format

Share Document