scholarly journals Gravitational and Dynamical Instabilities of a Decelerating Plane-Parallel Slab of Finite Thickness

1988 ◽  
Vol 101 ◽  
pp. 509-512
Author(s):  
G. Mark Voit

AbstractIn order to explore how supernova blast waves might catalyze star formation, we investigate the stability of a slab of decelerating gas of finite thickness. We examine the early work in the field by Elmegreen and Lada and Elmegreen and Elmegreen and demonstrate that it is flawed. Contrary to their claims, blast waves can indeed accelerate the rate of star formation in the interstellar medium. Also, we demonstrate that in an incompressible fluid, the symmetric and antisymmetric modes in the case of zero acceleration transform continuously into Rayleigh-Taylor and gravity-wave modes as acceleration grows more important.

1997 ◽  
Vol 166 ◽  
pp. 413-416
Author(s):  
S. Ehlerová ◽  
J. Palouš ◽  
Ch. Theis ◽  
G. Hensler

AbstractThe fragmentation of expanding shells and subsequent star formation are analyzed using an analytical model and computer simulations. We discuss the role of the sound speed in the ambient interstellar medium and the influence of the finite thickness of the gaseous disk.


2004 ◽  
Vol 217 ◽  
pp. 220-221
Author(s):  
L. Verdes-Montenegro ◽  
J. Sulentic ◽  
D. Espada ◽  
S. Leon ◽  
U. Lisenfeld ◽  
...  

We are constructing the first complete unbiased control sample of the most isolated galaxies of the northern sky to serve as a template in the study of star formation and galaxy evolution in denser environments. Our goal is to compare and quantify the properties of different phases of the interstellar medium in this sample, as well as the level of star formation, both relevant parameters in the internal evolution of galaxies and strongly conditioned by the environment. To achieve this goal we are building a multiwavelength database for this sample to compare and quantify the properties of different phases of the ISM.


Author(s):  
P. G. Drazin

ABSTRACTSome aspects of generation of water waves by wind and of turbulence in a heterogeneous fluid may be described by the theory of hydrodynamic stability. The technical difficulties of these problems of instability have led to obscurities in the literature, some of which are elucidated in this paper. The stability equation for a basic steady parallel horizontal flow under the influence of gravity is derived carefully, the undisturbed fluid having vertical variations of density and viscosity. Methods of solution of the equation for large Reynolds numbers and for long-wave disturbances are described. These methods are applied to simple models of wind blowing over water and of fresh water flowing over salt water.


2014 ◽  
Vol 49 (5) ◽  
pp. 196-201 ◽  
Author(s):  
M. R. Hakobyan ◽  
A. A. Ghandevosyan ◽  
R. S. Hakobyan ◽  
Yu. S. Chilingaryan

2012 ◽  
Vol 8 (S294) ◽  
pp. 325-336 ◽  
Author(s):  
Blakesley Burkhart ◽  
Alex Lazarian

AbstractMagnetohydrodynamic (MHD) turbulence is a critical component of the current paradigms of star formation, dynamo theory, particle transport, magnetic reconnection and evolution of the ISM. In order to gain understanding of how MHD turbulence regulates processes in the Galaxy, a confluence of numerics, observations and theory must be imployed. In these proceedings we review recent progress that has been made on the connections between theoretical, numerical, and observational understanding of MHD turbulence as it applies to both the neutral and ionized interstellar medium.


2006 ◽  
Vol 2 (S237) ◽  
pp. 358-362
Author(s):  
M. K. Ryan Joung ◽  
Mordecai-Mark Mac Low

AbstractWe report on a study of interstellar turbulence driven by both correlated and isolated supernova explosions. We use three-dimensional hydrodynamic models of a vertically stratified interstellar medium run with the adaptive mesh refinement code Flash at a maximum resolution of 2 pc, with a grid size of 0.5 × 0.5 × 10 kpc. Cold dense clouds form even in the absence of self-gravity due to the collective action of thermal instability and supersonic turbulence. Studying these clouds, we show that it can be misleading to predict physical properties such as the star formation rate or the stellar initial mass function using numerical simulations that do not include self-gravity of the gas. Even if all the gas in turbulently Jeans unstable regions in our simulation is assumed to collapse and form stars in local freefall times, the resulting total collapse rate is significantly lower than the value consistent with the input supernova rate. The amount of mass available for collapse depends on scale, suggesting a simple translation from the density PDF to the stellar IMF may be questionable. Even though the supernova-driven turbulence does produce compressed clouds, it also opposes global collapse. The net effect of supernova-driven turbulence is to inhibit star formation globally by decreasing the amount of mass unstable to gravitational collapse.


Sign in / Sign up

Export Citation Format

Share Document