scholarly journals Photometric and H-Alpha Variability in Some Be Stars

1987 ◽  
Vol 92 ◽  
pp. 101-103
Author(s):  
S. Catalano ◽  
G. Umana

Short-term variations, typically with small amplitude (Δm < 0.1 mag.), time-scales of hours or near one day and in many cases correlated with the rotation period have been found to be commonplace among Be stars (see Harmanec and Pavlovski 1983 for review and papers). Radial and non-radial pulsation modes have been proposed to explain this variability. However, the light curves are often double-peaked, at first suggesting the stars may have large organized dipole magnetic fields and spots not unlike those in the Ap or Bp stars (Harmanec 1983). These rotationally modulated variations are not stable, and seem to vary in both amplitude and period in the sense that intervals with well defined light curves alternate with intervals when variations are absent. This phenomenon is very reminiscent of formation and apparent relative movement in longitude of spots (groups) in some RS CVn binaries (Catalano 1983, Rodono 1986), but on a much more rapid time scale.

1994 ◽  
Vol 162 ◽  
pp. 299-300
Author(s):  
John R. Percy

Be stars are hot stars which have shown emission in at least one Balmer line on at least one occasion. As the definition implies, the Be phenomenon can be variable with time: on time scales of days to decades as the circumstellar disc develops and disperses; on time scales of days to months in a few Be stars which are interacting binaries; on time scales of 0.2 to 2 days due to non-radial pulsation or possibly rotation. The Be stars are worthy of photometric study because they are bright and numerous; the nature of the short-term variability is not yet agreed upon; the cause of the development of the disc - and its relationship to the short-term variability - is also not yet known.


2019 ◽  
Vol 20 (6) ◽  
pp. 1165-1182 ◽  
Author(s):  
Kaighin A. McColl ◽  
Qing He ◽  
Hui Lu ◽  
Dara Entekhabi

Abstract Land–atmosphere feedbacks occurring on daily to weekly time scales can magnify the intensity and duration of extreme weather events, such as droughts, heat waves, and convective storms. For such feedbacks to occur, the coupled land–atmosphere system must exhibit sufficient memory of soil moisture anomalies associated with the extreme event. The soil moisture autocorrelation e-folding time scale has been used previously to estimate soil moisture memory. However, the theoretical basis for this metric (i.e., that the land water budget is reasonably approximated by a red noise process) does not apply at finer spatial and temporal resolutions relevant to modern satellite observations and models. In this study, two memory time scale metrics are introduced that are relevant to modern satellite observations and models: the “long-term memory” τL and the “short-term memory” τS. Short- and long-term surface soil moisture (SSM) memory time scales are spatially anticorrelated at global scales in both a model and satellite observations, suggesting hot spots of land–atmosphere coupling will be located in different regions, depending on the time scale of the feedback. Furthermore, the spatial anticorrelation between τS and τL demonstrates the importance of characterizing these memory time scales separately, rather than mixing them as in previous studies.


2018 ◽  
Vol 613 ◽  
pp. A70 ◽  
Author(s):  
T. Semaan ◽  
A. M. Hubert ◽  
J. Zorec ◽  
J. Gutiérrez-Soto ◽  
Y. Frémat ◽  
...  

Context. The class of Be stars are the epitome of rapid rotators in the main sequence. These stars are privileged candidates for studying the incidence of rotation on the stellar internal structure and on non-radial pulsations. Pulsations are considered possible mechanisms to trigger mass-ejection phenomena required to build up the circumstellar disks of Be stars. Aims. Time series analyses of the light curves of 15 faint Be stars observed with the CoRoT satellite were performed to obtain the distribution of non-radial pulsation (NRP) frequencies in their power spectra at epochs with and without light outbursts and to discriminate pulsations from rotation-related photometric variations. Methods. Standard Fourier techniques were employed to analyze the CoRoT light curves. Fundamental parameters corrected for rapid-rotation effects were used to study the power spectrum as a function of the stellar location in the instability domains of the Hertzsprung–Russell (H-R) diagram. Results. Frequencies are concentrated in separate groups as predicted for g-modes in rapid B-type rotators, except for the two stars that are outside the H-R instability domain. In five objects the variations in the power spectrum are correlated with the time-dependent outbursts characteristics. Time-frequency analysis showed that during the outbursts the amplitudes of stable main frequencies within 0.03 c d−1 intervals strongly change, while transients and/or frequencies of low amplitude appear separated or not separated from the stellar frequencies. The frequency patterns and activities depend on evolution phases: (i) the average separations between groups of frequencies are larger in the zero-age main sequence (ZAMS) than in the terminal age main sequence (TAMS) and are the largest in the middle of the MS phase; (ii) a poor frequency spectrum with f ≲ 1 cd−1 of low amplitude characterizes the stars beyond the TAMS; and (iii) outbursts are seen in stars hotter than B4 spectral type and in the second half of the MS. Conclusions. The two main frequency groups are separated by δf = (1.24 ± 0.28) × frot in agreement with models of prograde sectoral g-modes (m = −1, −2) of intermediate-mass rapid rotators. The changes of amplitudes of individual frequencies and the presence of transients correlated with the outburst events deserve further studies of physical conditions in the subatmospheric layers to establish the relationship between pulsations and sporadic mass-ejection events.


1976 ◽  
Vol 70 ◽  
pp. 41-49 ◽  
Author(s):  
J. D. R. Bahng
Keyword(s):  
Be Stars ◽  

Photoelectric spectrum scans of Be stars were analysed to study the short-term variations of Hα emission strengths. In ζ Tau, α Col, PP Car, and δ Cen, definite variations of a few percent with time scales of 1 to 3 minutes were found. These variations do not exhibit any periodicity.


2012 ◽  
Vol 8 (S294) ◽  
pp. 257-268 ◽  
Author(s):  
I. S. Savanov

AbstractI review the currently available techniques for the starspots detection including the one-dimensional spot modelling of photometric light curves. Special attention will be paid to the modelling of photospheric activity based on the high-precision light curves obtained with space missions MOST, CoRoT, and Kepler. Physical spot parameters (temperature, sizes and variability time scales including short-term activity cycles) are discussed.


2020 ◽  
Vol 635 ◽  
pp. A140 ◽  
Author(s):  
C. C. Borre ◽  
D. Baade ◽  
A. Pigulski ◽  
D. Panoglou ◽  
A. Weiss ◽  
...  

Context. Be stars are physically complex systems that continue to challenge theory to understand their rapid rotation, complex variability, and decretion disks. γ Cassiopeiae (γ Cas) is one such star but is even more curious because of its unexplained hard thermal X-ray emission. Aims. We aim to examine the optical variability of γ Cas and thereby to shed more light on its puzzling behaviour. Methods. We analysed 321 archival Hα spectra from 2006 to 2017 to search for frequencies corresponding to the 203.5 day orbit of the companion. Space photometry from the SMEI satellite from 2003 to 2011 and the BRITE-Constellation of nano-satellites from 2015 to 2019 were investigated in the period range from a couple of hours to a few days. Results. The orbital period of the companion of 203.5 days is confirmed with independent measurements from the structure of the Hα line emission. A strong blue versus red asymmetry in the amplitude distribution across the Hα emission line could hint at a spiral structure in the decretion disk. With the space photometry, the known frequency of 0.82 d−1 is confirmed in data from the early 2000s. A higher frequency of 2.48 d−1 is present in the data from 2015 to 2019 and possibly in the early 2000s as well. A third frequency at 1.25 d−1 is proposed to exist in both SMEI and BRITE data. Seemingly, only a non-radial pulsation interpretation can explain all three variations. The two higher frequencies are incompatible with rotation.


2011 ◽  
Vol 24 (3) ◽  
pp. 909-926 ◽  
Author(s):  
Timothy DelSole ◽  
Michael K. Tippett ◽  
Jagadish Shukla

Abstract The problem of separating variations due to natural and anthropogenic forcing from those due to unforced internal dynamics during the twentieth century is addressed using state-of-the-art climate simulations and observations. An unforced internal component that varies on multidecadal time scales is identified by a new statistical method that maximizes integral time scale. This component, called the internal multidecadal pattern (IMP), is stochastic and hence does not contribute to trends on long time scales; however, it can contribute significantly to short-term trends. Observational estimates indicate that the trend in the spatially averaged “well observed” sea surface temperature (SST) due to the forced component has an approximately constant value of 0.1 K decade−1, while the IMP can contribute about ±0.08 K decade−1 for a 30-yr trend. The warming and cooling of the IMP matches that of the Atlantic multidecadal oscillation and is of sufficient amplitude to explain the acceleration in warming during 1977–2008 as compared to 1946–77, despite the forced component increasing at the same rate during these two periods. The amplitude and time scale of the IMP are such that its contribution to the trend dominates that of the forced component on time scales shorter than 16 yr, implying that the lack of warming trend during the past 10 yr is not statistically significant. Furthermore, since the IMP varies naturally on multidecadal time scales, it is potentially predictable on decadal time scales, providing a scientific rationale for decadal predictions. While the IMP can contribute significantly to trends for periods of 30 yr or shorter, it cannot account for the 0.8°C warming that has been observed in the twentieth-century spatially averaged SST.


2020 ◽  
Vol 501 (1) ◽  
pp. 1100-1115
Author(s):  
C M Raiteri ◽  
M Villata ◽  
D Carosati ◽  
E Benítez ◽  
S O Kurtanidze ◽  
...  

ABSTRACT Blazar S5 0716+714 is well-known for its short-term variability, down to intraday time-scales. We here present the 2-min cadence optical light curve obtained by the TESS space telescope in 2019 December–2020 January and analyse the object fast variability with unprecedented sampling. Supporting observations by the Whole Earth Blazar Telescope Collaboration in B, V, R, and I bands allow us to investigate the spectral variability during the TESS pointing. The spectral analysis is further extended in frequency to the UV and X-ray bands with data from the Neil Gehrels Swift Observatory. We develop a new method to unveil the shortest optical variability time-scales. This is based on progressive de-trending of the TESS light curve by means of cubic spline interpolations through the binned fluxes, with decreasing time bins. The de-trended light curves are then analysed with classical tools for time-series analysis (periodogram, autocorrelation, and structure functions). The results show that below 3 d there are significant characteristic variability time-scales of about 1.7, 0.5, and 0.2 d. Variability on time-scales $\lesssim 0.2$ d is strongly chromatic and must be ascribed to intrinsic energetic processes involving emitting regions, likely jet substructures, with dimension less than about 10−3 pc. In contrast, flux changes on time-scales $\gtrsim 0.5$ d are quasi-achromatic and are probably due to Doppler factor changes of geometric origin.


1995 ◽  
Vol 155 ◽  
pp. 339-340 ◽  
Author(s):  
L. Mantegazza ◽  
E. Poretti ◽  
M. Bossi ◽  
F.M. Zerbi

The stars HD 224638 and HD 224945 belong to the new class of F0 V spectral type stars which show an unusual kind of variability for that region of the HR diagram (Mantegazza et al. 1993).The variability of these two stars has been discovered and studied by Mantegazza, Poretti & Zerbi (1994). They show small amplitude light variations with characteristic time scales of the order of one day. The light curves are not periodic and it is difficult to satisfactorily fit them even with several periodic terms.In order to explain our 1991 B colour observations we tentatively suggested that in both stars two close periodic terms were present with a characteristic frequency of about 0.8 c/d, and that these terms had a double wave shape for HD 224638 and a triple wave one for HD 224945.


1975 ◽  
Vol 67 ◽  
pp. 143-145
Author(s):  
A. F. Pugach

There seems to exist a small subgroup of irregular variables with light curves similar to R CrB stars but with a shorter time scale. These stars have small-amplitude light variations around a ‘normal brightness’, but this is interrupted by Algol-like minima of about to at irregular intervals. The duration of the minimum phase is several percent of the total time. While at minimum the variables also show rapid light variation of greater amplitude. Moreover, RZ Psc shows a flare activity, which strongly resembles that of UV Cet stars. The minimum phase is followed by a rapid recovery to the ‘normal brightness’.


Sign in / Sign up

Export Citation Format

Share Document