scholarly journals The dual nature of blazar fast variability: Space and ground observations of S5 0716+714

2020 ◽  
Vol 501 (1) ◽  
pp. 1100-1115
Author(s):  
C M Raiteri ◽  
M Villata ◽  
D Carosati ◽  
E Benítez ◽  
S O Kurtanidze ◽  
...  

ABSTRACT Blazar S5 0716+714 is well-known for its short-term variability, down to intraday time-scales. We here present the 2-min cadence optical light curve obtained by the TESS space telescope in 2019 December–2020 January and analyse the object fast variability with unprecedented sampling. Supporting observations by the Whole Earth Blazar Telescope Collaboration in B, V, R, and I bands allow us to investigate the spectral variability during the TESS pointing. The spectral analysis is further extended in frequency to the UV and X-ray bands with data from the Neil Gehrels Swift Observatory. We develop a new method to unveil the shortest optical variability time-scales. This is based on progressive de-trending of the TESS light curve by means of cubic spline interpolations through the binned fluxes, with decreasing time bins. The de-trended light curves are then analysed with classical tools for time-series analysis (periodogram, autocorrelation, and structure functions). The results show that below 3 d there are significant characteristic variability time-scales of about 1.7, 0.5, and 0.2 d. Variability on time-scales $\lesssim 0.2$ d is strongly chromatic and must be ascribed to intrinsic energetic processes involving emitting regions, likely jet substructures, with dimension less than about 10−3 pc. In contrast, flux changes on time-scales $\gtrsim 0.5$ d are quasi-achromatic and are probably due to Doppler factor changes of geometric origin.

2020 ◽  
Vol 494 (3) ◽  
pp. 3912-3926
Author(s):  
M R Kennedy ◽  
R P Breton ◽  
C J Clark ◽  
V S Dhillon ◽  
M Kerr ◽  
...  

ABSTRACT We present an optical, X-ray, and γ-ray study of 1SXPS J042749.2-670434, an eclipsing X-ray binary that has an associated γ-ray counterpart, 4FGL J0427.8-6704. This association has led to the source being classified as a transitional millisecond pulsar (tMSP) in an accreting state. We analyse 10.5 yr of Fermi LAT data and detect a γ-ray eclipse at the same phase as optical and X-ray eclipses at the >5 σ level, a significant improvement on the 2.8 σ level of the previous detection. The confirmation of this eclipse solidifies the association between the X-ray source and the γ-ray source, strengthening the tMSP classification. However, analysis of several optical data sets and an X-ray observation do not reveal a change in the source’s median brightness over long time-scales or a bi-modality on short time-scales. Instead, the light curve is dominated by flickering, which has a correlation time of 2.6 min alongside a potential quasi-periodic oscillation at ∼21 min. The mass of the primary and secondary stars is constrained to be $M_1=1.43^{+0.33}_{-0.19}$ M⊙ and $M_2=0.3^{+0.17}_{-0.12}$ M⊙ through modelling of the optical light curve. While this is still consistent with a white dwarf primary, we favour the tMSP in a low accretion state classification due to the significance of the γ-ray eclipse detection.


1988 ◽  
Vol 108 ◽  
pp. 319-334
Author(s):  
Ken’ichi Nomoto ◽  
Toshikazu Shigeyama ◽  
Masa-aki Hashimoto

AbstractPresupernova evolution of the progenitor of SN 1987A, hydrodynamics of explosion (shock propagation, explosive nucleosynthesis), optical light curve due to shock heating and 56Co decay, and X-ray and γ-ray light curves are calculated and compared with the observations of SN 1987A. Constraints on the mass of the hydrogen-rich envelope Menv (i.e., mass loss history) and the helium abundance in the envelope are obtained from the progenitor’s blue-red-blue evolution as well as from the light curve. The explosion energy E and the mass and distribution of 56Ni are inferred from the light curves. Models and observations are in reasonable agreement for E/Menv = 1.5 ± 0.5 × 1050 erg/M⊙, Menv = 5 - 10 M⊙, and MNi ∼ 0.07 M⊙. Mixing of 56Ni into the envelope is indicated.Light curves of exploding bare helium stars are also calculated to see whether the observed Type Ib supernova light curves can be accounted for.


1996 ◽  
Vol 175 ◽  
pp. 45-46
Author(s):  
L.O. Takalo ◽  
A. Sillanpää ◽  
T. Pursimo ◽  
H.J. Lehto ◽  
K. Nilsson ◽  
...  

Blazar OJ 287 is one of the best observed extragalactic objects. It's historical light curve goes back to 1890′s. Based on the historical behaviour Sillanpää et al. (1988) showed that OJ 287 displays large periodic outbursts, with a period of 11.7 years. We have monitored OJ 287 intensively for two years, during the OJ-94 project. This project was created for monitoring OJ 287 during its predicted new outburst in 1994. In the data archive we have over 7000 observations on OJ 287, in the radio, infrared and optical bands. This data archive contains the best ever obtained light curves for any extragalactic object. The optical light curve shows continuous variability down to time scales of tens of minutes. The variability observed in OJ 287 can be broken down to (at least) four different categories:


1988 ◽  
Vol 7 (4) ◽  
pp. 490-504 ◽  
Author(s):  
Ken’ichi Nomoto ◽  
Toshikazu Shigeyama ◽  
Shiomi Kumagai ◽  
Masa-aki Hashimoto

AbstractWe summarise recent developments in modelling SN 1987A including the progenitor’s evolution, explosive nucleosynthesis, optical, X- and γ-ray light curves, and dust formation. The distribution of heavy elements in the ejecta is inferred from the light curves. The pre-peak optical light curve as well as early emergence of X- and γ-ray indicate the mixing of 56Ni into the hydrogen-rich envelope. The plateau-like peak of the optical light curve is well reproduced if hydrogen is mixed into the deep core. The flat X-ray light curve observed by Ginga would be due to the clumpy structure of the core. The progenitor’s blue-red-blue evolution and nitrogen abundance suggest that the progenitor’s hydrogen-rich envelope had mass Menv = 7 − 11 M⊙ and was almost completely mixed.


1987 ◽  
Vol 93 ◽  
pp. 643-649
Author(s):  
J.P. Osborne ◽  
M. Cropper ◽  
S. Cristiani

AbstractThe preliminary results of EXOSAT and contemporaneous optical observations of E1405−451 (V834 Cen) in 1985 and 1986 are presented. In the latter of the two observations the soft X-ray light curve was observed to be quite different to that seen in all previous observations, but similar to the optical light curve and the new soft X-ray light curve of E2003+225. A phase shift of the broad soft X-ray eclipse was also observed. The hard X-ray and optical light curves have also undergone small changes.


1989 ◽  
Vol 104 (1) ◽  
pp. 289-298
Author(s):  
Giovanni Peres

AbstractThis paper discusses the hydrodynamic modeling of flaring plasma confined in magnetic loops and its objectives within the broader scope of flare physics. In particular, the Palermo-Harvard model is discussed along with its applications to the detailed fitting of X-ray light curves of solar flares and to the simulation of high-resolution Caxix spectra in the impulsive phase. These two approaches provide complementary constraints on the relevant features of solar flares. The extension to the stellar case, with the fitting of the light curve of an X-ray flare which occurred on Proxima Centauri, demonstrates the feasibility of using this kind of model for stars too. Although the stellar observations do not provide the wealth of details available for the Sun, and, therefore, constrain the model more loosely, there are strong motivations to pursue this line of research: the wider range of physical parameters in stellar flares and the possibility of studying further the solar-stellar connection.


1981 ◽  
pp. 405-406
Author(s):  
C. Chevalier ◽  
S. A. Ilovaisky ◽  
C. Motch ◽  
M. Pakull ◽  
J. Lub ◽  
...  

2020 ◽  
Vol 499 (2) ◽  
pp. 3006-3018
Author(s):  
Bangzheng Sun ◽  
Marina Orio ◽  
Andrej Dobrotka ◽  
Gerardo Juan Manuel Luna ◽  
Sergey Shugarov ◽  
...  

ABSTRACT We present X-ray observations of novae V2491 Cyg and KT Eri about 9 yr post-outburst of the dwarf nova and post-nova candidate EY Cyg, and of a VY Scl variable. The first three objects were observed with XMM–Newton, KT Eri also with the Chandra ACIS-S camera, V794 Aql with the Chandra ACIS-S camera and High Energy Transmission Gratings. The two recent novae, similar in outburst amplitude and light curve, appear very different at quiescence. Assuming half of the gravitational energy is irradiated in X-rays, V2491 Cyg is accreting at $\dot{m}=1.4\times 10^{-9}{\!-\!}10^{-8}\,{\rm M}_\odot \,{\rm yr}^{-1}$, while for KT Eri, $\dot{m}\lt 2\times 10^{-10}{\rm M}_\odot \,{\rm yr}$. V2491 Cyg shows signatures of a magnetized WD, specifically of an intermediate polar. A periodicity of  39 min, detected in outburst, was still measured and is likely due to WD rotation. EY Cyg is accreting at $\dot{m}\sim 1.8\times 10^{-11}{\rm M}_\odot \,{\rm yr}^{-1}$, one magnitude lower than KT Eri, consistently with its U Gem outburst behaviour and its quiescent UV flux. The X-rays are modulated with the orbital period, despite the system’s low inclination, probably due to the X-ray flux of the secondary. A period of  81 min is also detected, suggesting that it may also be an intermediate polar. V794 Aql had low X-ray luminosity during an optically high state, about the same level as in a recent optically low state. Thus, we find no clear correlation between optical and X-ray luminosity: the accretion rate seems unstable and variable. The very hard X-ray spectrum indicates a massive WD.


1989 ◽  
Vol 134 ◽  
pp. 108-109
Author(s):  
F.Z. Cheng ◽  
J.F. Lu ◽  
G.Z. Xie ◽  
K.H. Li ◽  
Z.L. Li ◽  
...  

In order to compare X-ray-selected BL Lac objects with radio-selected BL Lac objects, we have carried out optical monitoring of some of these objects for about three years at Yunnan Observatory in China. All observations have been made with a CCD-image system at the f/13.3 Cassegrain focus of the 102-cm RCC telescope. The CCD-image system was developed by Ye et al. in Kitt Peak National Observatory of USA (Ye et al., 1985). The filters used were as follows: B-GG385(2mm)+BG12(1mm)+BG18(1mm), V-GG495(2mm)+BG18(2mm). After observing many times, more complete light curves have obtained for the X-ray-selected BL Lac object IE 0317+186 and the radio-selected BL Lac object ON 231, respectively(Fig 1 and Fig 2). Fig 1 shows that IE 0317+186 has a characteristic timescale of about 4.5hours with an amplitudes of ΔV≃0.65 mag. Fig 2 indicates that a timescale of short-term variability in ON 231 is about 70 min with an amplitudes of ΔB≃0.8 mag.


2019 ◽  
Vol 490 (2) ◽  
pp. 1774-1783 ◽  
Author(s):  
Will Lockhart ◽  
Samuel E Gralla ◽  
Feryal Özel ◽  
Dimitrios Psaltis

ABSTRACT Thermal X-ray emission from rotation-powered pulsars is believed to originate from localized ‘hotspots’ on the stellar surface occurring where large-scale currents from the magnetosphere return to heat the atmosphere. Light-curve modelling has primarily been limited to simple models, such as circular antipodal emitting regions with constant temperature. We calculate more realistic temperature distributions within the polar caps, taking advantage of recent advances in magnetospheric theory, and we consider their effect on the predicted light curves. The emitting regions are non-circular even for a pure dipole magnetic field, and the inclusion of an aligned magnetic quadrupole moment introduces a north–south asymmetry. As the quadrupole moment is increased, one hotspot grows in size before becoming a thin ring surrounding the star. For the pure dipole case, moving to the more realistic model changes the light curves by $5\!-\!10{{\, \rm per\, cent}}$ for millisecond pulsars, helping to quantify the systematic uncertainty present in current dipolar models. Including the quadrupole gives considerable freedom in generating more complex light curves. We explore whether these simple dipole+quadrupole models can account for the qualitative features of the light curve of PSR J0437−4715.


Sign in / Sign up

Export Citation Format

Share Document