scholarly journals The Tensile Strength of Polycrystalline Ice (Abstract only)

1983 ◽  
Vol 4 ◽  
pp. 305
Author(s):  
E. M. Schulson ◽  
J. H. Currier

Structure/property relationships, while well-researched in metallic and in some ceramic materials, have been essentially ignored 1n studies on the mechanical properties of ice. To rectify this situation, experiments have been designed and have been underway for the past two years to investigate one mechanical property, i.e. tensile strength, and the effect of one structural feature, i.e. grain size, on this property. A clear relationship has been established, and is reported here. Other work is in progress and will also be reported in due course. Equiaxed and randomly oriented aggregates of freshwater ice, of grain size (as seen in two-dimensional sections) varying from 1.0 to 7.3 mm, were prepared in the form of large cylinders (91 mm diameter × 231 mm length). The aggregates were deformed to fracture under uniaxial tension, using a specially designed ball-joint and yoke assembly to ensure axial loading. Data were obtained at -10 ±0.2°C (i.e. at 96% of the melting point) at a strain-rate of 10−6 s−1. Figure 1 shows that the tensile strength decreases with increasing grain size, from 1.25 MPa for d = 1 mm to 0.80 MPa for d = 7 mm. Moreover, this figure illustrates that the data are highly reproducible; i.e. that strength is reproducible to within ±5% for a given grain size over the complete range. Fig. 1. Graph showing the decrease in the tensile strength of ice with increasing grain size. Concerning the functional relationship between tensile strength of and grain size, analysis shows that the following equation is well obeyed: Where σj is 0.6 MPa and k is 0.02 MPa m½ at -10°C and 10−6 s−1. This point is illustrated in Figure 2. Fig. 2. Hall-Petch plot showing the relationship between the tensile strength and the grain size of the ice. The d−½ character of this relationship, which is of the classical Hall-Petch form observed frequently in metallic materials, indicates that the tensile strength of ice is controlled by some process involving stress concentration, possibly the propagation of microcracks nucleated by the interactions of dislocations or the propagation of pre-existing defects. Of these, the former is the more probable. The reason is that processes involving dislocation motion, when expressed by the difference of σf – σi, are expected to increase linearly with increasing d−½, whereas processes involving the propagation of pre-existing defects predict a linear relationship between σf and d−½ which extrapolates through the origin. The former behavior is the one observed. It is thus concluded: (i) that the tensile strength of equiaxed and randomly oriented freshwater ice, when deformed slowly at -10°C, decreases with increasing grain size, (ii) that the functional relationship between tensile strength σf and grain size d is σf = σj + kd−½, where σj and k are materials parameters, and (iii) that the tensile strength of polycrystalline ice is controlled by the propagation in a brittle manner of microcracks nucleated by dislocation interactions. Acknowledgement This work was funded by the US Army Research Office, Contract No. DAA G-29-80-C-0064.

1983 ◽  
Vol 4 ◽  
pp. 305-305
Author(s):  
E. M. Schulson ◽  
J. H. Currier

Structure/property relationships, while well-researched in metallic and in some ceramic materials, have been essentially ignored 1n studies on the mechanical properties of ice. To rectify this situation, experiments have been designed and have been underway for the past two years to investigate one mechanical property, i.e. tensile strength, and the effect of one structural feature, i.e. grain size, on this property. A clear relationship has been established, and is reported here. Other work is in progress and will also be reported in due course.Equiaxed and randomly oriented aggregates of freshwater ice, of grain size (as seen in two-dimensional sections) varying from 1.0 to 7.3 mm, were prepared in the form of large cylinders (91 mm diameter × 231 mm length). The aggregates were deformed to fracture under uniaxial tension, using a specially designed ball-joint and yoke assembly to ensure axial loading. Data were obtained at -10 ±0.2°C (i.e. at 96% of the melting point) at a strain-rate of 10−6 s−1.Figure 1 shows that the tensile strength decreases with increasing grain size, from 1.25 MPa for d = 1 mm to 0.80 MPa for d = 7 mm. Moreover, this figure illustrates that the data are highly reproducible; i.e. that strength is reproducible to within ±5% for a given grain size over the complete range. Fig. 1.Graph showing the decrease in the tensile strength of ice with increasing grain size.Concerning the functional relationship between tensile strength of and grain size, analysis shows that the following equation is well obeyed:Where σj is 0.6 MPa and k is 0.02 MPa m½ at -10°C and 10−6 s−1. This point is illustrated in Figure 2. Fig. 2.Hall-Petch plot showing the relationship between the tensile strength and the grain size of the ice.The d−½ character of this relationship, which is of the classical Hall-Petch form observed frequently in metallic materials, indicates that the tensile strength of ice is controlled by some process involving stress concentration, possibly the propagation of microcracks nucleated by the interactions of dislocations or the propagation of pre-existing defects. Of these, the former is the more probable. The reason is that processes involving dislocation motion, when expressed by the difference of σf – σi, are expected to increase linearly with increasing d−½, whereas processes involving the propagation of pre-existing defects predict a linear relationship between σf and d−½ which extrapolates through the origin. The former behavior is the one observed.It is thus concluded: (i) that the tensile strength of equiaxed and randomly oriented freshwater ice, when deformed slowly at -10°C, decreases with increasing grain size, (ii) that the functional relationship between tensile strength σf and grain size d is σf = σj + kd−½, where σj and k are materials parameters, and (iii) that the tensile strength of polycrystalline ice is controlled by the propagation in a brittle manner of microcracks nucleated by dislocation interactions.AcknowledgementThis work was funded by the US Army Research Office, Contract No. DAA G-29-80-C-0064.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Srećko Bevandić ◽  
Rosie Blannin ◽  
Jacqueline Vander Auwera ◽  
Nicolas Delmelle ◽  
David Caterina ◽  
...  

Mine wastes and tailings derived from historical processing may contain significant contents of valuable metals due to processing being less efficient in the past. The Plombières tailings pond in eastern Belgium was selected as a case study to determine mineralogical and geochemical characteristics of the different mine waste materials found at the site. Four types of material were classified: soil, metallurgical waste, brown tailings and yellow tailings. The distribution of the mine wastes was investigated with drill holes, pit-holes and geophysical methods. Samples of the materials were assessed with grain size analysis, and mineralogical and geochemical techniques. The mine wastes dominantly consist of SiO2, Al2O3 and Fe2O3. The cover material, comprising soil and metallurgical waste is highly heterogeneous in terms of mineralogy, geochemistry and grain size. The metallurgical waste has a high concentration of metals (Zn: 0.1 to 24 wt.% and Pb: 0.1 to 10.1 wt.%). In the tailings materials, Pb and Zn vary from 10 ppm to 8.5 wt.% and from 51 ppm to 4 wt.%, respectively. The mining wastes comprises mainly quartz, amorphous phases and phyllosilicates, with minor contents of Fe-oxide and Pb- and Zn-bearing minerals. Based on the mineralogical and geochemical properties, the different potential applications of the four waste material types were determined. Additionally, the theoretical economic potential of Pb and Zn in the mine wastes was estimated.


2021 ◽  
Vol 11 (6) ◽  
pp. 2799
Author(s):  
Yanping Chen ◽  
Wenzhe Lyu ◽  
Tengfei Fu ◽  
Yan Li ◽  
Liang Yi

The Huanghe River (Yellow River) is the most sediment laden river system in the world, and many efforts have been conducted to understand modern deltaic evolution in response to anthropological impacts. However, the natural background and its linkage to climatic changes are less documented in previous studies. In this work, we studied the sediments of core YDZ–3 and marine surface samples by grain-size analysis to retrieve Holocene dynamics of the Huanghe River delta in detail. The main findings are as follows: The mean value of sediment grain size of the studied core is 5.5 ± 0.9 Φ, and silt and sand contents are 5.2 ± 2.3% and 8.2 ± 5.3%, respectively, while the variance of clay particles is relatively large with an average value of 86.4 ± 8.5%. All grain-size data can be mathematically partitioned by a Weibull-based function formula, and three subgroups were identified with modal sizes of 61.1 ± 28.9 μm, 30.0 ± 23.9 μm, and 2.8 ± 1.6 μm, respectively. There are eight intervals with abrupt changes in modal size of core YDZ–3, which can be correlated to paleo-superlobe migration of the Huanghe River in the Holocene. Based on these observations, the presence of seven superlobes in the history are confirmed for the first time and their ages are well constrained in this study, including Paleo-Superlobes Lijin (6400–5280 yr BP), Huanghua (4480–4190 yr BP), Jugezhuang (3880–3660 yr BP), Shajinzi (3070–2870 yr BP), Nigu (2780–2360 yr BP), Qikou (2140–2000 yr BP), and Kenli (1940–1780 and 1700–1650 yr BP). By tuning geomorphological events to a sedimentary proxy derived from core YDZ–3 and comparing to various paleoenvironmental changes, we proposed that winter climate dominated Holocene shifts of the Huanghe River delta on millennial timescales, while summer monsoons controlled deltaic evolution on centennial timescales.


1996 ◽  
Vol 2 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Andrew J. C. Hogg ◽  
Alan W. Mitchell ◽  
Susan Young

Sign in / Sign up

Export Citation Format

Share Document