scholarly journals Formation and disintegration of the Antarctic ice sheet

1994 ◽  
Vol 20 ◽  
pp. 336-340 ◽  
Author(s):  
Philippe Huybrechts

A model of the Antarctic ice sheet has been used to simulate the ice sheet in warmer climates, in order to investigate what kind of ice-sheet geometries one can reasonably expect under what kind of climatic conditions and to discover which physical mechanisms may be involved to explain them. The results of these experiments reveal the considerable stability of; in particular, the East Antarctic ice sheet. It would require a temperature rise of between 17 and 20 K above present levels to remove this ice sheet from the subglacial basins in the interior of the continent and of 25 K to melt down the Antarctic ice sheet completely. For a temperature rise below 5 K, the model actually predicts a larger Antarctic ice sheet than today as a result of increased snowfall, whereas the west Antarctic ice sheet was round not to survive temperatures more than 8–10 K above present values. Furthermore, basal temperature conditions in these experiments point to the problems involved in raising the base of the ice sheet to the pressure-melting point over the large areas necessary to consider the possibility of sliding instability. These results bear on a lively debate regarding the late Cenozoic glacial history of Antarctica. Particularly, based on these findings, it is difficult to reconcile a highly variable East Antarctic ice sheet until the Pliocene with modest warming recorded in, for instance, the deep-sea records for the late Neogene.

1994 ◽  
Vol 20 ◽  
pp. 336-340 ◽  
Author(s):  
Philippe Huybrechts

A model of the Antarctic ice sheet has been used to simulate the ice sheet in warmer climates, in order to investigate what kind of ice-sheet geometries one can reasonably expect under what kind of climatic conditions and to discover which physical mechanisms may be involved to explain them. The results of these experiments reveal the considerable stability of; in particular, the East Antarctic ice sheet. It would require a temperature rise of between 17 and 20 K above present levels to remove this ice sheet from the subglacial basins in the interior of the continent and of 25 K to melt down the Antarctic ice sheet completely. For a temperature rise below 5 K, the model actually predicts a larger Antarctic ice sheet than today as a result of increased snowfall, whereas the west Antarctic ice sheet was round not to survive temperatures more than 8–10 K above present values. Furthermore, basal temperature conditions in these experiments point to the problems involved in raising the base of the ice sheet to the pressure-melting point over the large areas necessary to consider the possibility of sliding instability. These results bear on a lively debate regarding the late Cenozoic glacial history of Antarctica. Particularly, based on these findings, it is difficult to reconcile a highly variable East Antarctic ice sheet until the Pliocene with modest warming recorded in, for instance, the deep-sea records for the late Neogene.


1982 ◽  
Vol 3 ◽  
pp. 138-145 ◽  
Author(s):  
T. J. Hughes

The mostly terrestrial East Antarctic ice sheet is ten times larger and probably more stable than the mostly marine West Antarctic ice sheet. It is natural to suppose that the former appeared first, and that perhaps the latter was partially formed from an outflow of East Antarctic ice onto the West Antarctic continental shelf. Alternatively, the largely marine West Antarctic ice sheet may have appeared first, provided that post-Eocene continental drift allowed heavy snow precipitation over the West Antarctic island archipelago, but prevented warm South Pacific ocean currents from entering. Sea ice could then thicken and ground from surface accumulation and basal freezing, creating broad marine ice domes in shallow West Antarctic embayments. These marine ice domes could then merge with ice caps on the islands to create a marine ice sheet that could expand into East Antarctica and merge with highland ice caps to form the terrestrial East Antarctic ice sheet. A Cenozoic glacial history of Antarctica is outlined, based on this marine ice transgression hypothesis.


1982 ◽  
Vol 3 ◽  
pp. 138-145 ◽  
Author(s):  
T. J. Hughes

The mostly terrestrial East Antarctic ice sheet is ten times larger and probably more stable than the mostly marine West Antarctic ice sheet. It is natural to suppose that the former appeared first, and that perhaps the latter was partially formed from an outflow of East Antarctic ice onto the West Antarctic continental shelf. Alternatively, the largely marine West Antarctic ice sheet may have appeared first, provided that post-Eocene continental drift allowed heavy snow precipitation over the West Antarctic island archipelago, but prevented warm South Pacific ocean currents from entering. Sea ice could then thicken and ground from surface accumulation and basal freezing, creating broad marine ice domes in shallow West Antarctic embayments. These marine ice domes could then merge with ice caps on the islands to create a marine ice sheet that could expand into East Antarctica and merge with highland ice caps to form the terrestrial East Antarctic ice sheet. A Cenozoic glacial history of Antarctica is outlined, based on this marine ice transgression hypothesis.


1979 ◽  
Vol 24 (90) ◽  
pp. 213-230 ◽  
Author(s):  
Craig S. Lingle ◽  
James A. Clark

AbstractThe Antarctic ice sheet has been reconstructed at 18000 years b.p. by Hughes and others (in press) using an ice-flow model. The volume of the portion of this reconstruction which contributed to a rise of post-glacial eustatic sea-level has been calculated and found to be (9.8±1.5) × 106 km3. This volume is equivalent to 25±4 m of eustatic sea-level rise, defined as the volume of water added to the ocean divided by ocean area. The total volume of the reconstructed Antarctic ice sheet was found to be (37±6) × 106 km3. If the results of Hughes and others are correct, Antarctica was the second largest contributor to post-glacial eustatic sea-level rise after the Laurentide ice sheet. The Farrell and Clark (1976) model for computation of the relative sea-level changes caused by changes in ice and water loading on a visco-elastic Earth has been applied to the ice-sheet reconstruction, and the results have been combined with the changes in relative sea-level caused by Northern Hemisphere deglaciation as previously calculated by Clark and others (1978). Three families of curves have been compiled, showing calculated relative sea-level change at different times near the margin of the possibly unstable West Antarctic ice sheet in the Ross Sea, Pine Island Bay, and the Weddell Sea. The curves suggest that the West Antarctic ice sheet remained grounded to the edge of the continental shelf until c. 13000 years b.p., when the rate of sea-level rise due to northern ice disintegration became sufficient to dominate emergence near the margin predicted otherwise to have been caused by shrinkage of the Antarctic ice mass. In addition, the curves suggest that falling relative sea-levels played a significant role in slowing and, perhaps, reversing retreat when grounding lines approached their present positions in the Ross and Weddell Seas. A predicted fall of relative sea-level beneath the central Ross Ice Shelf of as much as 23 m during the past 2000 years is found to be compatible with recent field evidence that the ice shelf is thickening in the south-east quadrant.


2014 ◽  
Vol 8 (3) ◽  
pp. 2995-3035 ◽  
Author(s):  
N. Schön ◽  
A. Zammit-Mangion ◽  
J. L. Bamber ◽  
J. Rougier ◽  
T. Flament ◽  
...  

Abstract. The Antarctic Ice Sheet is the largest potential source of future sea-level rise. Mass loss has been increasing over the last two decades in the West Antarctic Ice Sheet (WAIS), but with significant discrepancies between estimates, especially for the Antarctic Peninsula. Most of these estimates utilise geophysical models to explicitly correct the observations for (unobserved) processes. Systematic errors in these models introduce biases in the results which are difficult to quantify. In this study, we provide a statistically rigorous, error-bounded trend estimate of ice mass loss over the WAIS from 2003–2009 which is almost entirely data-driven. Using altimetry, gravimetry, and GPS data in a hierarchical Bayesian framework, we derive spatial fields for ice mass change, surface mass balance, and glacial isostatic adjustment (GIA) without relying explicitly on forward models. The approach we use separates mass and height change contributions from different processes, reproducing spatial features found in, for example, regional climate and GIA forward models, and provides an independent estimate, which can be used to validate and test the models. In addition, full spatial error estimates are derived for each field. The mass loss estimates we obtain are smaller than some recent results, with a time-averaged mean rate of −76 ± 15 GT yr−1 for the WAIS and Antarctic Peninsula (AP), including the major Antarctic Islands. The GIA estimate compares very well with results obtained from recent forward models (IJ05-R2) and inversion methods (AGE-1). Due to its computational efficiency, the method is sufficiently scalable to include the whole of Antarctica, can be adapted for other ice sheets and can easily be adapted to assimilate data from other sources such as ice cores, accumulation radar data and other measurements that contain information about any of the processes that are solved for.


2019 ◽  
Vol 49 (4) ◽  
pp. 403-424
Author(s):  
Fang Zou ◽  
Robert Tenzer ◽  
Samurdhika Rathnayake

Abstract In this study, we estimate the ice mass changes, the ice elevation changes and the vertical displacements in Antarctica based on analysis of multi-geodetic datasets that involve the satellite gravimetry (GRACE), the satellite altimetry (ICESat) and the global navigation satellite systems (GNSS). According to our estimates, the total mass change of the Antarctic ice sheet from GRACE data is −162.91 Gt/yr over the investigated period between April 2002 and June 2017. This value was obtained after applying the GIA correction of −98.12 Gt/yr derived from the ICE-5G model of the glacial iso-static adjustment. A more detailed analysis of mass balance changes for three individual drainage regions in Antarctica reveal that the mass loss of the West Antarctic ice sheet was at a rate of −143.11 Gt/yr. The mass loss of the Antarctic Peninsula ice sheet was at a rate of −24.31 Gt/yr. The mass of the East Antarctic ice sheet increased at a rate of 5.29 Gt/yr during the investigated period. When integrated over the entire Antarctic ice sheet, average rates of ice elevation changes over the period from March 2003 to October 2009 derived from ICESat data represent the loss of total ice volume of −155.6 km3.The most prominent features in ice volume changes in Antarctica are characterized by a strong dynamic thinning and ice mass loss in the Amundsen Sea Embayment that is part of the West Antarctic ice sheet. In contrast, coastal regions between Dronning Maud Land and Enderby Land exhibit a minor ice increase, while a minor ice mass loss is observed in Wilkes Land. The vertical load displacement rates estimated from GRACE and GPS data relatively closely agree with the GIA model derived based on the ice-load history and the viscosity profile. For most sites, the GRACE signal appears to be in phase and has the same amplitude as that obtained from the GPS vertical motions while other sites exhibit some substantial differences possibly attributed to thermo-elastic deformations associated with surface temperature.


Geology ◽  
2010 ◽  
Vol 38 (5) ◽  
pp. 411-414 ◽  
Author(s):  
Michael J. Bentley ◽  
Christopher J. Fogwill ◽  
Anne M. Le Brocq ◽  
Alun L. Hubbard ◽  
David E. Sugden ◽  
...  

2015 ◽  
Vol 1 (8) ◽  
pp. e1500589 ◽  
Author(s):  
Ricarda Winkelmann ◽  
Anders Levermann ◽  
Andy Ridgwell ◽  
Ken Caldeira

The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.


2018 ◽  
Author(s):  
Kevin Bulthuis ◽  
Maarten Arnst ◽  
Sainan Sun ◽  
Frank Pattyn

Abstract. Ice loss from the Antarctic ice sheet (AIS) is expected to become the major contributor to sea-level rise in the next centuries. Projections of the AIS response to climate change based on numerical ice-sheet models remain challenging to establish due to the complexity of physical processes involved in ice-sheet dynamics, including instability mechanisms that can destabilise marine sectors with retrograde slopes. Moreover, uncertainties in ice-sheet models limit the ability to provide accurate sea-level rise projections. Here, we apply probabilistic methods to a hybrid ice-sheet model to investigate the influence of several sources of uncertainty, namely sources of uncertainty in atmospheric forcing, basal sliding, grounding-line flux parameterisation, calving, sub-shelf melting, ice-shelf rheology and bedrock relaxation, on the continental response of the Antarctic ice sheet to climate change over the next millennium. We provide probabilistic projections of sea-level rise and grounding-line retreat and we carry out stochastic sensitivity analyses to determine the most influential sources of uncertainty. We find that all sources of uncertainty, except perhaps the bedrock relaxation times, contribute to the uncertainty in the projections. We show that the sensitivity of the projections to uncertainties increases and the contribution of the uncertainty in sub-shelf melting to the uncertainty in the projections becomes more and more dominant as the scenario gets warmer. We show that the significance of the AIS contribution to sea-level rise is controlled by marine ice-sheet instability (MISI) in marine basins, with the biggest contribution stemming from the more vulnerable West Antarctic ice sheet. We find that, irrespectively of parametric uncertainty, the strongly mitigated RCP 2.6 scenario prevents the collapse of the West Antarctic ice sheet, that in both RCP 4.5 and RCP 6.0 scenarios the occurrence of MISI in marine basins is more sensitive to parametric uncertainty and that, almost irrespectively of parametric uncertainty, RCP 8.5 triggers the collapse of the West Antarctic ice sheet.


Sign in / Sign up

Export Citation Format

Share Document