scholarly journals Saturation effect at high laser pulse energies in laser-induced breakdown spectroscopy for elemental analysis in water

2007 ◽  
Vol 25 (4) ◽  
pp. 613-620 ◽  
Author(s):  
Xiao Fang ◽  
S. Rafi Ahmad

AbstractSaturation effects in laser-induced breakdown spectroscopy in water for elemental analysis have been investigated. Existing theoretical model of laser-induced plasma in solids has been applied to liquid phase under some simplifying assumptions to take account of the laser pulse energy dependence of atomic emissions from Na and Cu in aqueous solution. The theory was found to explain the emission process for laser energies up to but below the saturation level. The saturation limit of the emission with laser pulse energy corresponds well with that of the plasma temperature deduced from blackbody emission considerations. The saturation energies for atomic emissions were found to be lower for bulk excitations compared to water jet excitations. The dependence of signal strength on sample concentration indicated that the concentration values at saturation are lower at higher laser energies, as is expected from the theoretical model.

2017 ◽  
Vol 72 (4) ◽  
pp. 584-590 ◽  
Author(s):  
Daniele A. Redoglio ◽  
Natascia Palazzo ◽  
Francesca Migliorini ◽  
Roberto Dondè ◽  
Silvana De Iuliis

In this work, laser-induced breakdown spectroscopy (LIBS) is applied for quantitative measurements of Pb in aerosols. In order to investigate the carrier gas role and, in particular, the effect of O2 addition to the gas itself, measurements are carried out in nitrogen and air atmosphere. Aerosol particles are produced by nebulizing Pb(CH3COO)2 * 3H2O aqueous solutions of known concentration and the atomic line of 405.8 nm is detected as Pb signature. The plasma generated with the laser pulse is characterized in terms of plasma temperature and electron density, showing no substantial differences with the two carrier gases used. The behavior of the LIBS signal as a function of the delay time with respect to the laser pulse is investigated changing the environmental conditions and, in particular, the Pb concentration values. The different trends registered in the case of relatively short (up to 20 μs) and long delay time, resulting to be the same whatever the Pb concentration value, could have a significant effect on the calibration curve performed in different experimental conditions.


2021 ◽  
Vol 602 ◽  
pp. 412495
Author(s):  
Javeria Batool ◽  
Nasir Amin ◽  
Yasir Jamil ◽  
NekM. Shaikh ◽  
Shamoon Al Islam

2021 ◽  
Author(s):  
Felipe Ferri Hilario ◽  
Matheus Lima de Mello ◽  
Edenir Rodrigues Pereira-Filho

With the use of Laser Induced Breakdown Spectroscopy (LIBS), fast and semi non-destructive elemental analysis of ball-point pen writings has been performed directly from paper surfaces, aiming to obtain maximum differentiation between pens with a minimum number of pulses.


2020 ◽  
pp. 000370282097304
Author(s):  
Amal A. Khedr ◽  
Mahmoud A. Sliem ◽  
Mohamed Abdel-Harith

In the present work, nanoparticle-enhanced laser-induced breakdown spectroscopy was used to analyze an aluminum alloy. Although LIBS has numerous advantages, it suffers from low sensitivity and low detection limits compared to other spectrochemical analytical methods. However, using gold nanoparticles helps to overcome such drawbacks and enhances the LIBS sensitivity in analyzing aluminum alloy in the current work. Aluminum was the major element in the analyzed samples (99.9%), while magnesium (Mg) was the minor element (0.1%). The spread of gold nanoparticles onto the Al alloy and using a laser with different pulse energies were exploited to enhance the Al alloy spectral lines. The results showed that Au NPs successfully improved the alloy spectral lines intensity by eight times, which could be useful for detecting many trace elements in higher matrix alloys. Under the assumption of local thermodynamic equilibrium, the Boltzmann plot was used to calculate the plasma temperature. Besides, the electron density was calculated using Mg and H lines at Mg(I) at 285.2 nm and Hα(I) at 656.2 nm, respectively. Three-dimensional contour mapping and color fill images contributed to understanding the behavior of the involved effects.


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Abdolhamed Shahedi ◽  
Esmaeil Eslami ◽  
Mohammad Reza Nourani

This study is devoted to tracing and identifying the elements available in bone sample using Laser-Induced Breakdown Spectroscopy (LIBS). The bone samples were prepared from the thigh of laboratory rats, which consumed 325.29 g/mol lead acetate having 4 mM concentration in specified time duration. About 76 atomic lines have been analyzed and we found that the dominant elements are Ca I, Ca II, Mg I, Mg II, Fe I, and Fe II. Temperature curve and bar graph were drawn to compare bone elements of group B which consumed lead with normal group, group A, in the same laboratory conditions. Plasma parameters including plasma temperature and electron density were determined by considering Local Thermodynamic Equilibrium (LTE) condition in the plasma. An inverse relationship has been detected between lead absorption and elements like Calcium and Magnesium absorption comparing elemental values for both the groups.


Sign in / Sign up

Export Citation Format

Share Document