carrier gases
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 27)

H-INDEX

19
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7573
Author(s):  
Agata Sawka

This paper shows the results of an investigation on the synthesis of non-porous and nanocrystalline ZrO2-Gd2O3 layers by metalorganic chemical vapor deposition (MOCVD) with the use of Zr(tmhd)4 (tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)zirconium(IV)) and Gd(tmhd)3 (tris(2,2,6,6-tetramethyl-3,5-heptanedionato)gadolinium(III)). Argon and air were used as carrier gases. The molar content of Gd(tmhd)3 in the gas reaction mixture was as follows: 10% and 20%. The layers were synthesized on tubular substrates made of quartz glass at the temperatures of 550–700 °C. Synthesis conditions were established using the Grx/Rex2 expression (Gr is the Grashof number; Re is the Reynolds number; x is the distance from the gas inflow point). The value of this criterion was below 0.01. ZrO2-Gd2O3 layers synthesized at 600–700 °C were crystalline. When the molar content of Gd(tmhd)3 in the gas reaction mixture was 10 mol.%, a relationship between the chemical composition of the gas reaction mixture and that of the deposited layer could be observed. The synthesized layers underwent scanning electron microscopy, as well as X-ray analysis. The transparency of coated and uncoated glass was tested using UV–Vis spectroscopy. Their chemical composition was examined with the use of an EDS analyzer.


2021 ◽  
Vol 62 (9) ◽  
Author(s):  
M. M. Campagna ◽  
J. Hrubý ◽  
M. E. H. van Dongen ◽  
D. M. J. Smeulders

AbstractKnowledge on critical cluster composition is important for improving the nucleation theory. Thus, homogeneous water nucleation experiments previously carried out in nitrogen and 0%, 5%, 15% and 25% of carbon dioxide ( Campagna et al. 2020a, 2021) are analyzed. The tests were conducted at 240 K and 0.1 MPa, 1 MPa and 2 MPa. The observed nucleation rates are strongly dependent on supersaturation, pressure, temperature and mixture composition. These experimentally found dependencies can be used to derive the composition of critical clusters by means of the nucleation theorem. In this way, a macroscopic quantity, nucleation rate, reveals properties of critical clusters consisting of a few tens of molecules. Two novel methods are presented for the detailed application of the nucleation theorem. The first method extends to mixtures of $$\,\,\,\,\,\,\,N>2\,\,\,\,\,\,$$ N > 2 components the approach used in literature for two components. The second method not only applies to $$N>2$$ N > 2 mixtures in a more straightforward manner, but it can also be used for unary as well as for binary and multi-component nucleation cases. To the best of our knowledge, for the first time the critical cluster composition is computed for high pressure nucleation data of a vapor (here water) in mixtures of two carrier gases (here carbon dioxide–nitrogen). After a proper parameterization of the nucleation rate data, both methods consistently lead to the same critical nuclei compositions within the experimental uncertainty. Increasing pressure and carbon dioxide molar fraction at fixed supersaturation leads to a decrease in the water content of the critical cluster, while the adsorbed number of nitrogen and carbon dioxide molecules increases. As a consequence, the surface tension decreases. This outcome explains the observed increase in the nucleation rate with increasing pressure and carbon dioxide molar fraction at constant supersaturation. Graphic abstract


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shahin Akbari ◽  
Nima Hasanvand ◽  
Sadegh Sadeghi ◽  
Mehdi Bidabadi ◽  
Qingang Xiong

Purpose The widespread usage of magnetic nanoparticles (MNPs) requires their efficient synthesis during combustion process. This study aims to present a mathematical model for the oxidation of MNPs in a counter-flow non-premixed combustion system to produce MNPs, where the key sub-processes during the oxidation reaction are involved. Design/methodology/approach To accurately describe structure of flame and determine distributions of temperature and mass fractions of both reactants and products, equations of energy and mass conservations were solved based on the prevailing assumptions that three regions, i.e. preheating, reaction and oxidizer zones exist. Findings The numerical simulation was first validated against experimental data and characteristics of the combustion process are discussed. Eventually, the influences of crucial parameters such as reactant Lewis numbers, strain rate ratio, particle size, inert gas and thermophoretic force on structure of flame and combustion behavior were examined. The results show that maximum flame temperature can achieve 2,205 K. Replacing nitrogen with argon and helium as carrier gases can increase flame temperature by about 27% and 34%, respectively. Additionally, maximum absolute thermophoretic force was found at approximately 9.6 × 10–8 N. Originality/value To the best of authors’ knowledge, this is the first time to numerically model the preparation of MNPs in a counter-flow non-premixed combustion configuration, which can guide large-scale experimental work in a more effective way.


Author(s):  
Faisal Saleem ◽  
Abdul Rehman ◽  
Aumber Abbas ◽  
Asif Hussain khoja ◽  
Farhan Ahmad ◽  
...  

2021 ◽  
pp. 138572
Author(s):  
Jing Guo ◽  
Ye-Jun Li ◽  
Jun-Ping Ma ◽  
Xian Tang ◽  
Xue-Shen Liu

2021 ◽  
Vol 109 (4) ◽  
pp. 243-260 ◽  
Author(s):  
Yves Wittwer ◽  
Robert Eichler ◽  
Dominik Herrmann ◽  
Andreas Türler

Abstract A new setup named Fast On-line Reaction Apparatus (FORA) is presented which allows for the efficient investigation and optimization of metal carbonyl complex (MCC) formation reactions under various reaction conditions. The setup contains a 252Cf-source producing short-lived Mo, Tc, Ru and Rh isotopes at a rate of a few atoms per second by its 3% spontaneous fission decay branch. Those atoms are transformed within FORA in-situ into volatile metal carbonyl complexes (MCCs) by using CO-containing carrier gases. Here, the design, operation and performance of FORA is discussed, revealing it as a suitable setup for performing single-atom chemistry studies. The influence of various gas-additives, such as CO2, CH4, H2, Ar, O2, H2O and ambient air, on the formation and transport of MCCs was investigated. O2, H2O and air were found to harm the formation and transport of MCCs in FORA, with H2O being the most severe. An exception is Tc, for which about 130 ppmv of H2O caused an increased production and transport of volatile compounds. The other gas-additives were not influencing the formation and transport efficiency of MCCs. Using an older setup called Miss Piggy based on a similar working principle as FORA, it was additionally investigated if gas-additives are mostly affecting the formation or only the transport stability of MCCs. It was found that mostly formation is impacted, as MCCs appear to be much less sensitive to reacting with gas-additives in comparison to the bare Mo, Tc, Ru and Rh atoms.


Author(s):  
C. Cisneros ◽  
T. Bautista ◽  
C. F. Betancourt ◽  
E. Prieto ◽  
A. Guerrero ◽  
...  

Multiphoton absorption is an intensity dependent nonlinear effect related to the excitation of virtual intermediate states. In the present work, multiphoton ionization and dissociation of the formic acid molecule (HCOOH) by the interaction with photons from 532 Nd: YAG laser at different intensities are discussed, using different carrier gases. The induced fragmentation-ionization patterns show up to 17 fragments and dissociation channels are proposed. Some evidence of small clusters formation and conformational memory from the ratio of the detected products, CO+ and CO2+, on the light of the available results, it is possible to conclude that they arise from trans and cis formic acid. Our results are compared with those obtained in other laboratories under different experimental conditions, some of them show only partial agreement and differences are discussed. Following the Keldysh description it is possible, from our experimental parameters, characterize our results, in the multiphoton absorption regime.


Sign in / Sign up

Export Citation Format

Share Document