scholarly journals Study on size of laser entrance hole shield for ignition octahedral spherical hohlraums

2015 ◽  
Vol 33 (4) ◽  
pp. 731-739 ◽  
Author(s):  
Shu Li ◽  
Ke Lan ◽  
Jie Liu

AbstractIn this paper, the influences of laser entrance hole shields on capsule symmetry and coupling efficiency of an ignition octahedral spherical hohlraum are studied using analytical model and three-dimensional Monte-Carlo simulations. As a result, there are two critical shield radii at which the capsule asymmetry tends to minimum, and the coupling efficiency from hohlraum to capsule reaches its maximum when the shield size is taken around the second critical radius. For the ignition octahedral hohlraums used in our study, the first critical radius is 0.625 mm with a capsule asymmetry of 0.24%, and the second is 0.86 mm with 0.26%, and the asymmetry is smaller than 0.58% for shields’ radius in the range of 0.44 and 0.88 mm, which therefore leaves much flexibility in the shield radius design even the shields have an expansion under radiation ablation. The initial shield radius can be taken around the first critical radius in the ignition target design, not only to have a minimum initial capsule radiation asymmetry, but also to get a minimum asymmetry and highest coupling efficiency during the main pulse of drive. Finally, the relative flux of laser spot, wall and shields is 2.2:1:0.6 for our ignition octahedral spherical hohlraum model from the Monte-Carlo simulations.

2021 ◽  
Author(s):  
Masahide Sato

Abstract Performing isothermal-isochoric Monte Carlo simulations, I examine the types of clusters that dumbbell-like one–patch particles form in thin space between two parallel walls, assuming that each particle is synthesized through the merging of two particles, one non-attracting and the other attracting for which, for example, the inter-particle interaction is approximated by the DLVO model. The shape of these dumbbell-like particles is controlled by the ratio of the diameters q of the two spherical particles and by the dimensionless distance l between them. Using a modified Kern–Frenkel potential, I examine the dependence of the cluster shape on l and q. Large island-like clusters are created when q < 1. With increasing q, the clusters become chain-like. When q increases further, elongated clusters and regular polygonal clusters are created. In hte simulations, the cluster shape becomes three-dimensional with increasing l because the thickness of the thin system increases proportionally to l.


2012 ◽  
Vol 190 ◽  
pp. 39-42
Author(s):  
M. Medvedeva ◽  
Pavel V. Prudnikov

The dynamic critical behavior of the three-dimensional Heisenberg model with longrangecorrelated disorder was studied by using short-time Monte Carlo simulations at criticality.The static and dynamic critical exponents are determined. The simulation was performed fromordered initial state. The obtained values of the exponents are in a good agreement with resultsof the field-theoretic description of the critical behavior of this model in the two-loopapproximation.


2020 ◽  
Vol 26 (3) ◽  
pp. 484-496
Author(s):  
Yu Yuan ◽  
Hendrix Demers ◽  
Xianglong Wang ◽  
Raynald Gauvin

AbstractIn electron probe microanalysis or scanning electron microscopy, the Monte Carlo method is widely used for modeling electron transport within specimens and calculating X-ray spectra. For an accurate simulation, the calculation of secondary fluorescence (SF) is necessary, especially for samples with complex geometries. In this study, we developed a program, using a hybrid model that combines the Monte Carlo simulation with an analytical model, to perform SF correction for three-dimensional (3D) heterogeneous materials. The Monte Carlo simulation is performed using MC X-ray, a Monte Carlo program, to obtain the 3D primary X-ray distribution, which becomes the input of the analytical model. The voxel-based calculation of MC X-ray enables the model to be applicable to arbitrary samples. We demonstrate the derivation of the analytical model in detail and present the 3D X-ray distributions for both primary and secondary fluorescence to illustrate the capability of our program. Examples for non-diffusion couples and spherical inclusions inside matrices are shown. The results of our program are compared with experimental data from references and with results from other Monte Carlo codes. They are found to be in good agreement.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masahide Sato

AbstractPerforming isothermal-isochoric Monte Carlo simulations, I examine the types of clusters that dumbbell-like one–patch particles form in thin space between two parallel walls, assuming that each particle is synthesized through the merging of two particles, one non-attracting and the other attracting for which, for example, the inter-particle interaction is approximated by the DLVO model . The shape of these dumbbell-like particles is controlled by the ratio of the diameters q of the two spherical particles and by the dimensionless distance l between these centers. Using a modified Kern–Frenkel potential, I examine the dependence of the cluster shape on l and q. Large island-like clusters are created when $$q<1$$ q < 1 . With increasing q, the clusters become chain-like . When q increases further, elongated clusters and regular polygonal clusters are created. In the simulations, the cluster shape becomes three-dimensional with increasing l because the thickness of the thin system increases proportionally to l.


1996 ◽  
Vol 181 (2) ◽  
pp. 422-428 ◽  
Author(s):  
Akira Satoh ◽  
Roy W. Chantrell ◽  
Shin-Ichi Kamiyama ◽  
Geoff N. Coverdale

Sign in / Sign up

Export Citation Format

Share Document