scholarly journals Significant enhancement in the propagation of cosh-Gaussian laser beam in a relativistic–ponderomotive plasma using ramp density profile

2018 ◽  
Vol 36 (2) ◽  
pp. 179-185 ◽  
Author(s):  
Harish Kumar ◽  
Munish Aggarwal ◽  
Richa ◽  
Dinkar Sharma ◽  
Sumit Chandok ◽  
...  

AbstractThe paper presents an investigation on self-focusing of cosh-Gaussian (ChG) laser beam in a relativistic–ponderomotive non-uniform plasma. It is observed numerically that the selection of decentered parameter and initial beam radius determines the focusing/defocusing of ChG laser beam. For given value of these parameters, the plasma density ramp of suitable length can avoid defocusing and enhance focusing effect significantly. Focusing length and extent of focusing may also be controlled by varying slope of the ramp density. A comparison with Gaussian beam has also been attempted for optimized set of parameters. The results establish that ChG beam focuses earlier and sharper relative to Gaussian beam. We have setup the non-linear differential equation for the beam width parameter using Wentzel–Kramers–Brillouin and paraxial ray approximation and solved it numerically using Runge–Kutta method.

2018 ◽  
Vol 36 (3) ◽  
pp. 353-358 ◽  
Author(s):  
Richa ◽  
Munish Aggarwal ◽  
Harish Kumar ◽  
Ranju Mahajan ◽  
Navdeep Singh Arora ◽  
...  

AbstractIn the present paper, we have investigated self-focusing of the quadruple Gaussian laser beam in underdense cold quantum plasma. The non-linearity chosen is associated with the relativistic mass effect that arises due to quiver motion of electron and electron density perturbation caused by ponderomotive force. The non-linearity modifies the plasma frequency in the dielectric function and hence the refractive index of the medium. The focusing/defocusing of the quadruple laser depends on the refractive index of the medium. We have set up non-linear differential equation that controls the beam width parameter by using well-known paraxial ray approximation and Wentzel–Krammers–Brillouin approximation. The effect of intensity parameter and electron temperature is observed on laser beam self-focusing in the presence of cold quantum plasma. From the results, it is revealed that electron temperature and the initial intensity of the laser beam control the profile dynamics of the laser beam.


2009 ◽  
Vol 27 (4) ◽  
pp. 587-593 ◽  
Author(s):  
A. Singh ◽  
M. Aggarwal ◽  
T.S. Gill

AbstractIn the present paper, we have investigated the growth of a Gaussian perturbation superimposed on a Gaussian laser beam. The nonlinearity we have considered is of relativistic type. We have setup the nonlinear differential equations for beam width parameter of the main beam, growth and width of the laser spike by using the WKB and paraxial ray approximation. These are coupled ordinary differential equations and therefore these are simultaneously solved numerically using the Runge Kutta method. It has been observed from the analysis that self-focusing/defocusing of the main beam and the spike determine the growth dynamic of the spike.


2016 ◽  
Vol 34 (3) ◽  
pp. 426-432 ◽  
Author(s):  
H. Kumar ◽  
M. Aggarwal ◽  
Richa ◽  
T.S. Gill

AbstractIn the present paper, we have investigated self-focusing of Gaussian laser beam in relativistic ponderomotive (RP) cold quantum plasma. When de Broglie wavelength of charged particles is greater than or equal to the inter particle distance or equivalently the temperature is less than or equal to the Fermi temperature, quantum nature of the plasma constituents cannot be ignored. In this context, we have reported self-focusing on account of nonlinear dielectric contribution of RP plasma by taking into consideration the impact of quantum effects. We have setup the nonlinear differential equation for the beam-width parameter by paraxial ray and Wentzel Kramers Brillouin approximation and solved it numerically by the Runge Kutta Fourth order method. Our results show that additional self-focusing is achieved in case of RP cold quantum plasma than relativistic cold quantum plasma and classical relativistic case. The pinching effect offered by quantum plasma and the combined effect of relativistic and ponderomotive nonlinearity greatly enhances laser propagation up to 20 Rayleigh lengths.


2017 ◽  
Vol 35 (1) ◽  
pp. 137-144 ◽  
Author(s):  
N. Ahmad ◽  
S. T. Mahmoud ◽  
G. Purohit

AbstractA paraxial ray formalism is developed to study the evolution of an on axis intensity spike on a Gaussian laser beam in a plasma dominated by relativistic and ponderomotive non-linearities. Ion motion is taken to be frozen. A single beam width parameter characterizes the evolution of the spike. The spike introduces two competing influences: diffraction divergence and self-convergence. The former grows with the reduction in spot size of the spike, while the latter depends on the gradient in non-linear permittivity. Parameter δ = (ωpr00/c) a00/(3.5 r00/r01) characterizes the relative importance of the two, where r01 and r00 are the spike and main beam radii, ωp is the plasma frequency, and a00 is the normalized laser amplitude. For δ > 1, the intensity ripple causes faster self-focusing of the beam; higher the ripple amplitude stronger the focusing. In the opposite limit, diffraction divergence increases more rapidly, slowing down the self-focusing of the beam. As the beam intensity rises due to self-focusing, it causes stronger generation of the third harmonic.


2017 ◽  
Vol 35 (1) ◽  
pp. 100-107 ◽  
Author(s):  
S. Kaur ◽  
M. Kaur ◽  
R. Kaur ◽  
T.S. Gill

AbstractIn the present research work, the authors have investigated the self-focusing and defocusing of Hermite-cosh-Gaussian laser (HChG) beam in an inhomogeneous rippled density plasmas. By taking the relativistic non-linearity into account, an equation for envelope is set up and solved using Wentzel–Kramers–Brillouin and the paraxial ray approximation. An ordinary non-linear differential equation governing the beam width parameter as a function of propagation distance is set up for different mode structures of the beam. Further, a numerical study of this differential equation is carried for suitable set of plasma and laser parameters. The beam undergoes periodic self-focusing/defocusing due to relativistic non-linearity. We also report the comparison between self-focusing/defocusing of HChG beam in the absence and presence of density ripple. Presence of ripple does not only leads to substantial increase in self-focusing length, but also results in oscillatory character with decreasing f. In a relativistic case, strong oscillatory self-focusing and defocusing is observed. Further, self-focusing is enhanced with increased value of decentered parameter.


1999 ◽  
Vol 62 (4) ◽  
pp. 389-396 ◽  
Author(s):  
M. V. ASTHANA ◽  
A. GIULIETTI ◽  
DINESH VARSHNEY ◽  
M. S. SODHA

This paper presents an analysis of the relativistic self-focusing of a rippled Gaussian laser beam in a plasma. Considering the nonlinearity as arising owing to relativistic variation of mass, and following the WKB and paraxial-ray approximations, the phenomenon of self-focusing of rippled laser beams is studied for arbitrary magnitude of nonlinearity. Pandey et al. [Phys. Fluids82, 1221 (1990)] have shown that a small ripple on the axis of the main beam grows very rapidly with distance of propagation as compared with the self-focusing of the main beam. Based on this analogy, we have analysed relativistic self-focusing of rippled beams in plasmas. The relativistic intensities with saturation effects of nonlinearity allow the nonlinear refractive index in the paraxial regime to have a slower radial dependence, and thus the ripple extracts relatively less energy from its neighbourhood.


2011 ◽  
Vol 77 (6) ◽  
pp. 777-784 ◽  
Author(s):  
RUCHIKA GUPTA ◽  
M. RAFAT ◽  
R. P. SHARMA

AbstractA paraxial-like approach has been invoked to understand the nature of propagation of a hollow Gaussian beam (HGB) propagating in plasma under the influence of relativistic non-linearity. In this approach, the parameters are expanded in terms of the radial distance from the maximum of irradiance rather than that from the axis. This paper investigates the excitation of plasma wave in a hot collision less plasma by HGB. On account of the × force, a plasma wave at 2ω0 (here, ω0 is the pump laser frequency) is generated. The solution of the HGB has been obtained within the paraxial ray approximation. Filamentary structures of the laser beam are observed due to relativistic non-linearity.


2016 ◽  
Vol 34 (4) ◽  
pp. 621-630 ◽  
Author(s):  
B. Gaur ◽  
P. Rawat ◽  
G. Purohit

AbstractThis work presents an investigation of the self-focusing of a high-power laser beam having cosh Gaussian intensity profile in a collissionless plasma under weak relativistic-ponderomotove (RP) and only relativistic regimes and its effect on the excitation of electron plasma wave (EPW), and particle acceleration process. Nonlinear differential equations have been set up for the beam width and intensity of cosh Gaussian laser beam (CGLB) and EPW using the Wentzel-Kramers-Brillouin and paraxial-ray approximations as well as fluid equations. The numerical results are presented for different values of decentered parameter ‘b’ and intensity parameter ‘a’ of CGLB. Strong self-focusing is observed in RP regime as compared with only relativistic nonlinearity. Numerical analysis shows that these parameters play crucial role on the self-focusing of the CGLB and the excitation of EPW. It is also found that the intensity/amplitude of EPW increases with b and a. Further, nonlinear coupling between the CGLB and EPW leads to the acceleration of electrons. The intensity of EPW and energy gain by electrons is significantly affected by including the ponderomotive nonlinearity. The energy of the accelerated electrons is increased by increasing the value of ‘b’. The results are presented for typical laser and plasma parameters.


2016 ◽  
Vol 34 (3) ◽  
pp. 385-393 ◽  
Author(s):  
Harjit Singh Ghotra ◽  
Niti Kant

AbstractElectron acceleration by a circularly polarized Hermite–Gaussian (HG) laser beam in the plasma has been investigated theoretically for the different transverse electromagnetic (TEM) mode indices (m, n) as (0, 1), (0, 2), (0, 3), and (0, 4). HG laser beam possesses higher trapping force compared with a standard Gaussian beam owing to its propagation characteristics during laser–electron interaction. A single-particle simulation indicates a resonant enhancement in the electron acceleration with HG laser beam. We present the intensity distribution for different TEM modes. We also analyze the dependence of beam width parameter on electron acceleration distance, which effectively influences the electron dynamics. Electron acceleration up to longer distance is observed with the lower modes. However, the higher electron energy gain is observed with higher modes at shorter distance of propagation.


2012 ◽  
Vol 78 (5) ◽  
pp. 553-558 ◽  
Author(s):  
MUNTHER B. HASSAN ◽  
A. H. AL-JANABI ◽  
MONIKA SINGH ◽  
R. P. SHARMA

AbstractThe terahertz (THz) frequency radiation produced as a result of nonlinear interaction of high intense laser beam with low-density ripple in collisionless magnetoplasma has been studied under the paraxial ray approximation. The relativistic change of electron mass leads to self-focusing of laser beam when the initial power of laser beam is greater than its critical power. The self-focused laser beam couples with the pre-existing density ripple to produce a nonlinear current driving the THz radiation at different frequency. The applied magnetic field enhances the nonlinear coupling efficiency. Appropriate expressions for the beam width parameter of the laser beam and the electric vector of the THz wave have been evaluated. Theory and numerical simulations show that this THz source is capable of providing power of Giga watt level.


Sign in / Sign up

Export Citation Format

Share Document