Real-time obstacle avoidance for multiple mobile robots

Robotica ◽  
2009 ◽  
Vol 27 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Farbod Fahimi ◽  
C. Nataraj ◽  
Hashem Ashrafiuon

SUMMARYAn efficient, simple, and practical real time path planning method for multiple mobile robots in dynamic environments is introduced. Harmonic potential functions are utilized along with the panel method known in fluid mechanics. First, a complement to the traditional panel method is introduced to generate a more effective harmonic potential field for obstacle avoidance in dynamically changing environments. Second, a group of mobile robots working in an environment containing stationary and moving obstacles is considered. Each robot is assigned to move from its current position to a goal position. The group is not forced to maintain a formation during the motion. Every robot considers the other robots of the group as moving obstacles and hence the physical dimensions of the robots are also taken into account. The path of each robot is planned based on the changing position of the other robots and the position of stationary and moving obstacles. Finally, the effectiveness of the scheme is shown by modeling an arbitrary number of mobile robots and the theory is validated by several computer simulations and hardware experiments.

Author(s):  
F. Fahimi ◽  
C. Nataraj ◽  
H. Ashrafiuon

An efficient real time path planning method for groups of mobile robots in dynamic environments is introduced. Harmonic potential functions are utilized along with the panel method known in fluid mechanics. First, a complement to the traditional panel method is introduced to generate a more effective harmonic potential field for obstacle avoidance in dynamically changing environments. Second, a group of mobile robots working in an environment containing stationary and moving obstacles is considered. Each robot is assigned to move from its current position to a goal position. The group is not forced to maintain a formation during the motion. Every robot considers the other robots of the group as moving obstacles and hence the physical dimensions of the robots are also taken into account. The path of each robot is planned based on the changing position of the other robots and the position of stationary and moving obstacles. Finally, the effectiveness of the scheme is shown by modeling groups of an arbitrary number of mobile robots and the theory is validated by several computer simulations and hardware experiments.


Robotica ◽  
1992 ◽  
Vol 10 (3) ◽  
pp. 217-227 ◽  
Author(s):  
Huang Han-Pang ◽  
Lee Pei-Chien

SUMMARYA real-time obstacle avoidance algorithm is proposed for autonomous mobile robots. The algorithm is sensor-based and consists of a H-mode and T-mode. The algorithm can deal with a complicated obstacle environment, such as multiple concave and convex obstacles. It will be shown that the algorithm is more efficient and more robust than other sensor-based algorithms. In addition, the algorithm will guarantee a solution for the obstacle avoidance problem. Since the algorithm only takes up a small computational time, it can be implemented in real time.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xuexi Zhang ◽  
Jiajun Lai ◽  
Dongliang Xu ◽  
Huaijun Li ◽  
Minyue Fu

As the basic system of the rescue robot, the SLAM system largely determines whether the rescue robot can complete the rescue mission. Although the current 2D Lidar-based SLAM algorithm, including its application in indoor rescue environment, has achieved much success, the evaluation of SLAM algorithms combined with path planning for indoor rescue has rarely been studied. This paper studies mapping and path planning for mobile robots in an indoor rescue environment. Combined with path planning algorithm, this paper analyzes the applicability of three SLAM algorithms (GMapping algorithm, Hector-SLAM algorithm, and Cartographer algorithm) in indoor rescue environment. Real-time path planning is studied to test the mapping results. To balance path optimality and obstacle avoidance, A ∗ algorithm is used for global path planning, and DWA algorithm is adopted for local path planning. Experimental results validate the SLAM and path planning algorithms in simulated, emulated, and competition rescue environments, respectively. Finally, the results of this paper may facilitate researchers quickly and clearly selecting appropriate algorithms to build SLAM systems according to their own demands.


Sign in / Sign up

Export Citation Format

Share Document