Novel three-dimensional optimal path planning method for vehicles with constrained pitch and yaw

Robotica ◽  
2016 ◽  
Vol 35 (11) ◽  
pp. 2157-2176 ◽  
Author(s):  
B. Wehbe ◽  
S. Bazzi ◽  
E. Shammas

SUMMARYThis paper presents a novel method for generating three-dimensional optimal trajectories for a vehicle or body that moves forward at a constant speed and steers in both horizontal and vertical directions. The vehicle's dynamics limit the body-frame pitch and yaw rates; additionally, the climb and decent angles of the vehicle are also bounded. Given the above constraints, the path planning problem is solved geometrically by building upon the two-dimensional Dubins curves and then Pontryagin's Maximum Principle is used to validate that the proposed solution lies within the family of candidate time-optimal trajectories. Finally, given the severe boundedness constraints on the vertical motion of the system, the robustness of the proposed path planning method is validated by naturally extending it to remain applicable to high-altitude final configurations.

2020 ◽  
Vol 152 ◽  
pp. 101644 ◽  
Author(s):  
Chinmay S. Kulkarni ◽  
Pierre F.J. Lermusiaux

Robotica ◽  
2013 ◽  
Vol 32 (4) ◽  
pp. 611-624 ◽  
Author(s):  
Yaonan Wang ◽  
Wenming Cao

SUMMARYThis paper presents a novel global path planning method for mobile robots. An improved grid map, called three-dimensional-like map, is developed to represent the global workspace area. The new environment model includes not only contour information of obstacles but also artificial height information. Based on this new model, a simple but efficient obstacle avoidance algorithm is developed to solve robot path planning problems in static environment. The proposed algorithm only requires simple distance calculations and several comparison operations. In addition, unlike other algorithms, the proposed algorithm only needs to deal with some obstacles instead of all. The research results show that this method is computationally efficient and can be used to find an optimal or near optimal path.


Author(s):  
Shih-chien Chiang ◽  
Carl D. Crane ◽  
Joseph Duffy

Abstract This work addresses the three dimensional path planning for an Articulated Transporter/Manipulator System (ATMS) in a given working environment. A vertical motion capability provides the ATMS a new ability which can be used to advantage in the generation of collision free paths. It also complicates the path planning process, however, by not being constrained to a 2D environment. A hierarchical structure of path planning is developed to decompose the three-dimensional path planning problem into several two-dimensional sub-problems.


Procedia CIRP ◽  
2021 ◽  
Vol 96 ◽  
pp. 324-329
Author(s):  
Frederik Wulle ◽  
Max Richter ◽  
Christoph Hinze ◽  
Alexander Verl

Author(s):  
Zhe Zhang ◽  
Jian Wu ◽  
Jiyang Dai ◽  
Cheng He

For stealth unmanned aerial vehicles (UAVs), path security and search efficiency of penetration paths are the two most important factors in performing missions. This article investigates an optimal penetration path planning method that simultaneously considers the principles of kinematics, the dynamic radar cross-section of stealth UAVs, and the network radar system. By introducing the radar threat estimation function and a 3D bidirectional sector multilayer variable step search strategy into the conventional A-Star algorithm, a modified A-Star algorithm was proposed which aims to satisfy waypoint accuracy and the algorithm searching efficiency. Next, using the proposed penetration path planning method, new waypoints were selected simultaneously which satisfy the attitude angle constraints and rank-K fusion criterion of the radar system. Furthermore, for comparative analysis of different algorithms, the conventional A-Star algorithm, bidirectional multilayer A-Star algorithm, and modified A-Star algorithm were utilized to settle the penetration path problem that UAVs experience under various threat scenarios. Finally, the simulation results indicate that the paths obtained by employing the modified algorithm have optimal path costs and higher safety in a 3D complex network radar environment, which show the effectiveness of the proposed path planning scheme.


Author(s):  
Duane W. Storti ◽  
Debasish Dutta

Abstract We consider the path planning problem for a spherical object moving through a three-dimensional environment composed of spherical obstacles. Given a starting point and a terminal or target point, we wish to determine a collision free path from start to target for the moving sphere. We define an interference index to count the number of configuration space obstacles whose surfaces interfere simultaneously. In this paper, we present algorithms for navigating the sphere when the interference index is ≤ 2. While a global calculation is necessary to characterize the environment as a whole, only local knowledge is needed for path construction.


Author(s):  
S. Zhang ◽  
C. Liu ◽  
N. Haala

Abstract. Lightweight unmanned aerial vehicles (UAVs) have been widely used in image acquisition for 3D reconstruction. With the availability of compact and high-end imaging sensors, UAVs can be the platform for precise photogrammetric reconstruction. However, the completeness and precision of complex environment or targets highly rely on the flight planning due to the self-occlusion of structures. Flight paths with back-and-forth pattern and nadir views will result in incompleteness and precision loss of the 3D reconstruction. Therefore, multiple views from different directions are preferred in order to eliminate the occlusion. We propose a 3D path planning method for multirotor UAVs aiming at capturing images for complete and precise photogrammetric 3D reconstructions. This method takes the coarse model from an initial flight as prior knowledge and estimates its completeness and precision. New imaging positions are then planned taking photogrammetric constraints into account. The real-world experiment on a ship lock shows that the proposed method can acquire a more complete result with similar precision compared with an existing 3D planning method.


Sign in / Sign up

Export Citation Format

Share Document