M-ESTIMATION FOR A SPATIAL UNILATERAL AUTOREGRESSIVE MODEL WITH INFINITE VARIANCE INNOVATIONS

2010 ◽  
Vol 26 (6) ◽  
pp. 1663-1682 ◽  
Author(s):  
S.M. Roknossadati ◽  
M. Zarepour

We study the limiting behavior of the M-estimators of parameters for a spatial unilateral autoregressive model with independent and identically distributed innovations in the domain of attraction of a stable law with index α ∈ (0, 2]. Both stationary and unit root models and some extensions are considered. It is also shown that self-normalized M-estimators are asymptotically normal. A numerical example and a simulation study are also given.

2008 ◽  
Vol 24 (3) ◽  
pp. 677-695 ◽  
Author(s):  
M. Zarepour ◽  
S.M. Roknossadati

We consider the limiting behavior of a vector autoregressive model of order one (VAR(1)) with independent and identically distributed (i.i.d.) innovations vector with dependent components in the domain of attraction of a multivariate stable law with possibly different indices of stability. It is shown that in some cases the ordinary least squares (OLS) estimates are inconsistent. This inconsistency basically originates from the fact that each coordinate of the partial sum processes of dependent i.i.d. vectors of innovations in the domain of attraction of stable laws needs a different normalizer to converge to a limiting process. It is also revealed that certain M-estimates, with some regularity conditions, as an appropriate alternative, not only resolve inconsistency of the OLS estimates but also give higher consistency rates in all cases.


2006 ◽  
Vol 43 (02) ◽  
pp. 421-440
Author(s):  
Remigijus Leipus ◽  
Vygantas Paulauskas ◽  
Donatas Surgailis

We discuss the limit behavior of the partial sums process of stationary solutions to the (autoregressive) AR(1) equation X t = a t X t−1 + ε t with random (renewal-reward) coefficient, a t , taking independent, identically distributed values A j ∈ [0,1] on consecutive intervals of a stationary renewal process with heavy-tailed interrenewal distribution, and independent, identically distributed innovations, ε t , belonging to the domain of attraction of an α-stable law (0 < α ≤ 2, α ≠ 1). Under suitable conditions on the tail parameter of the interrenewal distribution and the singularity parameter of the distribution of A j near the unit root a = 1, we show that the partial sums process of X t converges to a λ-stable Lévy process with index λ < α. The paper extends the result of Leipus and Surgailis (2003) from the case of finite-variance X t to that of infinite-variance X t .


1990 ◽  
Vol 6 (1) ◽  
pp. 44-62 ◽  
Author(s):  
P.C.B. Phillips

In [4] Chan and Tran give the limit theory for the least-squares coefficient in a random walk with i.i.d. (identically and independently distributed) errors that are in the domain of attraction of a stable law. This paper discusses their results and provides generalizations to the case of I(1) processes with weakly dependent errors whose distributions are in the domain of attraction of a stable law. General unit root tests are also studied. It is shown that the semiparametric corrections suggested by the author in other work [22] for the finite-variance case continue to work when the errors have infinite variance. Surprisingly, no modifications to the formulas given in [22] are required. The limit laws are expressed in terms of ratios of quadratic functional of a stable process rather than Brownian motion. The correction terms that eliminate nuisance parameter dependencies are random in the limit and involve multiple stochastic integrals that may be written in terms of the quadratic variation of the limiting stable process. Some extensions of these results to models with drifts and time trends are also indicated.


2006 ◽  
Vol 43 (2) ◽  
pp. 421-440
Author(s):  
Remigijus Leipus ◽  
Vygantas Paulauskas ◽  
Donatas Surgailis

We discuss the limit behavior of the partial sums process of stationary solutions to the (autoregressive) AR(1) equation Xt = atXt−1 + εt with random (renewal-reward) coefficient, at, taking independent, identically distributed values Aj ∈ [0,1] on consecutive intervals of a stationary renewal process with heavy-tailed interrenewal distribution, and independent, identically distributed innovations, εt, belonging to the domain of attraction of an α-stable law (0 < α ≤ 2, α ≠ 1). Under suitable conditions on the tail parameter of the interrenewal distribution and the singularity parameter of the distribution of Aj near the unit root a = 1, we show that the partial sums process of Xt converges to a λ-stable Lévy process with index λ < α. The paper extends the result of Leipus and Surgailis (2003) from the case of finite-variance Xt to that of infinite-variance Xt.


1977 ◽  
Vol 14 (02) ◽  
pp. 411-415 ◽  
Author(s):  
E. J. Hannan ◽  
Marek Kanter

The least squares estimators β i(N), j = 1, …, p, from N data points, of the autoregressive constants for a stationary autoregressive model are considered when the disturbances have a distribution attracted to a stable law of index α &lt; 2. It is shown that N1/δ(β i(N) – β) converges almost surely to zero for any δ &gt; α. Some comments are made on alternative definitions of the βi (N).


2010 ◽  
Vol 42 (2) ◽  
pp. 509-527 ◽  
Author(s):  
Donata Puplinskaitė ◽  
Donatas Surgailis

Contemporaneous aggregation ofNindependent copies of a random-coefficient AR(1) process with random coefficienta∈ (−1, 1) and independent and identically distributed innovations belonging to the domain of attraction of an α-stable law (0 < α < 2) is discussed. We show that, under the normalizationN1/α, the limit aggregate exists, in the sense of weak convergence of finite-dimensional distributions, and is a mixed stable moving average as studied in Surgailis, Rosiński, Mandrekar and Cambanis (1993). We focus on the case where the slope coefficientahas probability density vanishing regularly ata= 1 with exponentb∈ (0, α − 1) for α ∈ (1, 2). We show that in this case, the limit aggregate {X̅t} exhibits long memory. In particular, for {X̅t}, we investigate the decay of the codifference, the limit of partial sums, and the long-range dependence (sample Allen variance) property of Heyde and Yang (1997).


2013 ◽  
Vol 29 (6) ◽  
pp. 1162-1195 ◽  
Author(s):  
Giuseppe Cavaliere ◽  
Iliyan Georgiev

We consider estimation and testing in finite-order autoregressive models with a (near) unit root and infinite-variance innovations. We study the asymptotic properties of estimators obtained by dummying out “large” innovations, i.e., those exceeding a given threshold. These estimators reflect the common practice of dealing with large residuals by including impulse dummies in the estimated regression. Iterative versions of the dummy-variable estimator are also discussed. We provide conditions on the preliminary parameter estimator and on the threshold that ensure that (i) the dummy-based estimator is consistent at higher rates than the ordinary least squares estimator, (ii) an asymptotically normal test statistic for the unit root hypothesis can be derived, and (iii) order of magnitude gains of local power are obtained.


2010 ◽  
Vol 42 (02) ◽  
pp. 509-527 ◽  
Author(s):  
Donata Puplinskaitė ◽  
Donatas Surgailis

Contemporaneous aggregation of N independent copies of a random-coefficient AR(1) process with random coefficient a ∈ (−1, 1) and independent and identically distributed innovations belonging to the domain of attraction of an α-stable law (0 &lt; α &lt; 2) is discussed. We show that, under the normalization N 1/α, the limit aggregate exists, in the sense of weak convergence of finite-dimensional distributions, and is a mixed stable moving average as studied in Surgailis, Rosiński, Mandrekar and Cambanis (1993). We focus on the case where the slope coefficient a has probability density vanishing regularly at a = 1 with exponent b ∈ (0, α − 1) for α ∈ (1, 2). We show that in this case, the limit aggregate {X̅ t } exhibits long memory. In particular, for {X̅ t }, we investigate the decay of the codifference, the limit of partial sums, and the long-range dependence (sample Allen variance) property of Heyde and Yang (1997).


1996 ◽  
Vol 33 (3) ◽  
pp. 614-622 ◽  
Author(s):  
K. A. Borovkov ◽  
V A. Vatutin

We derive the limit behaviour of the distribution tail of the global maximum of a critical Galton–Watson process and also of the expectations of partial maxima of the process, when the offspring law belongs to the domain of attraction of a stable law. Thus the Lindvall (1976) and Athreya (1988) results are extended to the infinite variance case. It is shown that in the general case these two asymptotics are closely related to each other, and the latter follows readily from the former. We also discuss a related problem from the theory of general branching processes.


1989 ◽  
Vol 5 (3) ◽  
pp. 354-362 ◽  
Author(s):  
Ngai Hang Chan ◽  
Lanh Tat Tran

For a first-order autoregressive process Yt = βYt−1 + ∈t where the ∈t'S are i.i.d. and belong to the domain of attraction of a stable law, the strong consistency of the ordinary least-squares estimator bn of β is obtained for β = 1, and the limiting distribution of bn is established as a functional of a Lévy process. Generalizations to seasonal difference models are also considered. These results are useful in testing for the presence of unit roots when the ∈t'S are heavy-tailed.


Sign in / Sign up

Export Citation Format

Share Document