scholarly journals TAIL BEHAVIOR OF STOPPED LÉVY PROCESSES WITH MARKOV MODULATION

2021 ◽  
pp. 1-28
Author(s):  
Brendan K. Beare ◽  
Won-Ki Seo ◽  
Alexis Akira Toda

This article concerns the tail probabilities of a light-tailed Markov-modulated Lévy process stopped at a state-dependent Poisson rate. The tails are shown to decay exponentially at rates given by the unique positive and negative roots of the spectral abscissa of a certain matrix-valued function. We illustrate the use of our results with an application to the stationary distribution of wealth in a simple economic model in which agents with constant absolute risk aversion are subject to random mortality and income fluctuation.

1980 ◽  
Vol 53 (3) ◽  
pp. 285 ◽  
Author(s):  
Steven A. Lippman ◽  
John J. McCall ◽  
Wayne L. Winston

2009 ◽  
Vol 25 (2) ◽  
pp. 153-159
Author(s):  
Joseph B. Kadane ◽  
Gaia Bellone

According to Mark Rubinstein (2006) ‘In 1952, anticipating Kenneth Arrow and John Pratt by over a decade, he [de Finetti] formulated the notion of absolute risk aversion, used it in connection with risk premia for small bets, and discussed the special case of constant absolute risk aversion.’ The purpose of this note is to ascertain the extent to which this is true, and at the same time, to correct certain minor errors that appear in de Finetti's work.


2014 ◽  
Vol 37 (1) ◽  
pp. 39-49
Author(s):  
Krzysztof Echaust

Abstract The article presents a problem of proper hedging strategy in expected utility model when forward contracts and options strategies are available. We consider a case of hedging when an investor formulates his own expectation on future price of underlying asset. In this paper we propose the way to measure effectiveness of hedging strategy, based on optimal forward hedge ratio. All results are derived assuming a constant absolute risk aversion utility function and a Black-Scholes framework.


SERIEs ◽  
2021 ◽  
Author(s):  
Silvia Martinez-Gorricho ◽  
Miguel Sanchez Villalba

AbstractWe generalize the disutility of effort function in the linear-Constant Absolute Risk Aversion (CARA) pure moral hazard model. We assume that agents are heterogeneous in ability. Each agent’s ability is observable and treated as a parameter that indexes the disutility of effort associated with the task performed. In opposition to the literature (the “traditional” scenario), we find a new, “novel” scenario, in which a high-ability agent may be offered a weaker incentive contract than a low-ability one, but works harder. We characterize the conditions for the existence of these two scenarios: formally, the “traditional” (“novel”) scenario occurs if and only if the marginal rate of substitution of the marginal disutility of effort function is increasing (decreasing) in effort when evaluated at the second-best effort. If, further, this condition holds for all parameter values and matching is endogenous, less (more) talented agents work for principals with riskier projects in equilibrium. This implies that the indirect and total effects of risk on incentives are negative under monotone assortative matching.


Author(s):  
Kerry E. Back

The portfolio choice model is introduced, and the first‐order condition is derived. Properties of the demand for a single risky asset are derived from second‐order risk aversion and decreasing absolute risk aversion. Optimal investments are independent of initial wealth for investors with constant absolute risk aversion. Optimal investments are affine functions of initial wealth for investors iwth linear risk tolerance. The optimal portfolio for an investor with constant absolute risk aversion is derived when asset returns are normally distributed. Investors with quadratic utility have mean‐variance preferences, and investors have mean‐variance preferences when returns are elliptically distributed.


2020 ◽  
Vol 15 (3) ◽  
pp. 891-921
Author(s):  
Yuval Heller ◽  
Amnon Schreiber

We study various decision problems regarding short‐term investments in risky assets whose returns evolve continuously in time. We show that in each problem, all risk‐averse decision makers have the same (problem‐dependent) ranking over short‐term risky assets. Moreover, in each problem, the ranking is represented by the same risk index as in the case of constant absolute risk aversion utility agents and normally distributed risky assets.


Sign in / Sign up

Export Citation Format

Share Document