Leaf litter effects on seed and seedling predation of the palm Astrocaryum murumuru and the legume tree Dipteryx micrantha in Amazonian forest

1997 ◽  
Vol 13 (5) ◽  
pp. 709-725 ◽  
Author(s):  
Renato Cintra

ABSTRACTThe amount of leaf litter fall produced by different tree species in tropical forests varies in space and time. Falling litter may cover seeds and thereby enhance their survival by making their detection by seed predators more difficult. Tests were made to determine whether Astrocaryum murumuru and Dipteryx micrantha seeds survive better in microsites covered by leaf litter. Seed numbers and litter cover on the forest floor were experimentally manipulated. How natural variation in leaf litter cover and thickness affects seed and seedling survival of these two plant species was also examined. Seed survivorship was significantly higher for both plant species in microsites with leaf litter than in those with bare soil. Results from an experiment in which the litter was not disturbed showed that Astrocaryum seed survival was positively correlated with litter thickness (defined as the number of overlying dead leaves). Astrocaryum seedling survival was also significantly affected by leaf litter; more seedlings survived in shallow litter. Leaf litter had no effect on Dipteryx seedling survival. The results of the study suggest that early recruitment of both Astrocaryum and Dipteryx is influenced by the spatial distribution and amount of forest leaf litter.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ning Li ◽  
Zheng Wang ◽  
Yao Cai ◽  
Lin Zhang

Abstract Background Remnant microhabitats are important for bird habitat selection and plant regeneration in the fragmented habitat. However, empirical information on the consequences of how microhabitat use by birds affects the early recruitment of plants is lacking. Methods In this study, we evaluated whether microhabitat selection by the Black Bulbul (Hypsipetes leucocephalus) (J. F. Gmelin, 1789) impacts the early recruitment of the endangered tree species, the Chinese Yew (Taxus chinensis (Pilger) Rehd), in a fragmented forest over a 4-year period (2011–2012, 2018–2019). Results Our results showed the main factors affecting H. leucocephalus microhabitat selection were distance to the nearest T. chinensis mature tree, herb cover and density, leaf litter cover, and vegetation type. Moreover, the results of logistic regression also highlighted the importance of elevation, distance to light gap and roads, tree cover in bird microhabitat selection. Furthermore, the seed emergence rate in microhabitats used by birds did not differ from the natural forest, which was related to five factors of bird microhabitat. The Random Forest model showed that seedling emergence rate was increased with leaf litter cover and distance to fallen dead trees, but decreased in relation to herb cover, slope, and elevation. Conclusion Our results highlight the importance of remnant microhabitats in fragmented forests for sustaining forest ecology and optimal management. The contribution of microhabitats used by birds to plant recruitment provides insights into how frugivore species contribute to plant regeneration, which should be incorporated in future conservation and management practices of fragmented forests.


2021 ◽  
Author(s):  
Razia Sultana ◽  
ASM Saifullah ◽  
Rahat Khan Khan ◽  
Mir Talas Mahammad Diganta

Abstract The litters in the forest floor are the principal contributor for regulating the cycling of necessary elements, primary productivity and maintain soil fertility within the forest ecosystems. Therefore, this study was conducted in a deciduous forest of Bangladesh to ascertain the leaf-litter production and decomposition along with elemental dynamics (K, Ca, Mn, Fe, Co and Zn). Leaf-litter samples from five deciduous plant species and soil samples were collected from the Madhupur Sal Forest for about six months (July-December) in 2018. Production of leaf-litter during the dry season (December) was found in an order of Shorea robusta>Dipterocarpus indicus>Terminalia bellirica>Tectona grandis>Grewia microcos. The decomposition rates were higher for the long sampling period (90 days) followed by the intermediate (60 days)> short(30 days) sampling period. The nutrient release pattern from the leaf-litter was similar (Ca>K>Mn>Fe>Zn>Co) for all plant species except for Terminalia bellirica and Tectona grandis. The Pearson correlation coefficients showed a significant relationship between K and Fe (r=0.54; p<0.05), Ca and Co (r=0.59; p<0.01), Fe and Co (r=0.97; p<0.05) in leaf-litters. Analysis of variance (ANOVA) revealed significant variation in the litter production, decomposition and nutrient content (except Zn; p>0.05) among the different plant species (p<0.05). There revealed a significant dynamic of necessary elements from soil to trees and vice-versa.


2010 ◽  
Vol 24 (4) ◽  
pp. 937-946 ◽  
Author(s):  
Tatiana De Oliveira ◽  
Stephan Hättenschwiler ◽  
Ira Tanya Handa

1992 ◽  
Vol 22 (11) ◽  
pp. 1761-1769 ◽  
Author(s):  
Kurt S. Pregitzer ◽  
Andrew J. Burton ◽  
Glenn D. Mroz ◽  
Hal O. Liechty ◽  
Neil W. MacDonald

Emissions of sulfur (S) and nitrogen (N) oxides in the midwestern and northeastern United States result in pronounced regional gradients of acidic deposition. The objective of this study was to determine the extent to which atmospheric deposition alters the uptake and cycling of S and N in five analogous northern hardwood forests located along one of the most pronounced regional gradients of SO42−-S and NO3−-N deposition in the United States. We tested the hypothesis that acidic deposition would alter foliar S and N ratios and nutrient cycling in aboveground litter fall. Sulfate in both wet deposition and throughfall increased by a factor of two across the 800-km deposition gradient. The July concentration of S in sugar maple (Acersaccharum Marsh.) leaves increased from about 1600 μg•g−1 at the northern research sites to 1800–1900 μg•g−1 at the southern sites. Differences in leaf litter S concentration were even more pronounced (872–1356 μg•g−1), and a clear geographic trend was always apparent in litter S concentration. The 3-year average S content of leaf litter was 63% greater at the southern end of the pollution gradient. Nitrate and total N deposition were also significantly greater at the southern end of the gradient. The concentration of N in both summer foliage and leaf litter was not correlated with N deposition, but the content of N in leaf litter was significantly correlated with N deposition. The molar ratios of S:N in mid-July foliage and leaf litter increased as atmospheric deposition of SO42−-S increased. Ratios of S:N were always much greater in leaf litter than in mid-July foliage. The molar ratios of S:N retranslocated from the canopies of these northern hardwood forests were less than those in mid-July foliage or litter fall and showed no geographic trend related to deposition, suggesting that S and N are retranslocated in a relatively fixed proportion. Significant correlations between SO42−-S deposition and foliar S concentration, S cycling, and the molar ratio of S:N in foliage suggest that sulfate deposition has altered the uptake and cycling of S in northern hardwood forests of the Great Lakes region.


Zootaxa ◽  
2012 ◽  
Vol 3316 (1) ◽  
pp. 63 ◽  
Author(s):  
MARTIN FIKÁČEK

Georissus (Neogeorissus) smetanai sp. nov. is described from Mt. Kinabalu National Park, Sabah, Malaysia. Long series of thisspecies has been sifted from cloud forest leaf litter in contrast to most species of the genus, which are most frequently collectedin riparian zones. The species is compared with G. lateralis Delève, 1967 and G. inflatus Delève, 1972, which were collected under similar circumstances and the leaf-litter habits of the three species are briefly discussed.Keywords. Georissus, new species, leaf litter, terrestrial habitats, aptery, Malaysia, Borneo, Sri Lanka, Republic of the Congo


2020 ◽  
Vol 22 (6) ◽  
pp. 1917-1930
Author(s):  
Staentzel Cybill ◽  
Rouifed Soraya ◽  
Beisel Jean-Nicolas ◽  
Hardion Laurent ◽  
Poulin Nicolas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document