scholarly journals NOTE ON APPROXIMATIONS FOR THE MULTISERVER QUEUE WITH FINITE BUFFER AND DETERMINISTIC SERVICES

2008 ◽  
Vol 22 (4) ◽  
pp. 653-658 ◽  
Author(s):  
Henk Tijms

This article shows that very accurate accurate approximations to performance measures in the multiserver M/D/c/c+N queue with finite buffer and deterministic service times can be obtained by replacing the deterministic service time by a two-phase process with exponential sojourn times and branching probabilities outside the interval [0, 1].

2006 ◽  
Vol 21 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Henk Tijms ◽  
Koen Staats

This article derives amazingly accurate approximations to the state probabilities and waiting-time probabilities in the M/D/1 queue using a two-phase process with negative probabilities to approximate the deterministic service time. The approximations are in the form of explicit expressions involving geometric and exponential terms. The approximations extend to the finite-capacity M/D/1/N + 1 queue.


1989 ◽  
Vol 21 (2) ◽  
pp. 488-489 ◽  
Author(s):  
Thomas M. Chen

Reich (1957) proved that the sojourn times in two tandem queues are independent when the first queue is M/M /1 and the second has exponential service times. When service times in the first queue are not exponential, it has been generally expected that the sojourn times are not independent. A proof for the case of deterministic service times in the first queue is offered here.


2013 ◽  
Vol 4 (1) ◽  
pp. 1-24 ◽  
Author(s):  
P. Vijaya Laxmi ◽  
V. Goswami ◽  
K. Jyothsna

This article presents the analysis of a finite buffer M/M/1 queue with multiple and single working vacations. The arriving customers balk (that is do not join the queue) with a probability and renege (that is leave the queue after joining) according to exponential distribution. The inter-arrival times, service times during a regular service period, service times during a vacation period and vacation times are independent and exponentially distributed random variables. Steady-state behavior of the model is considered and various performance measures, some special cases of the model and cost analysis are discussed.


1989 ◽  
Vol 21 (02) ◽  
pp. 488-489
Author(s):  
Thomas M. Chen

Reich (1957) proved that the sojourn times in two tandem queues are independent when the first queue is M/M /1 and the second has exponential service times. When service times in the first queue are not exponential, it has been generally expected that the sojourn times are not independent. A proof for the case of deterministic service times in the first queue is offered here.


1997 ◽  
Vol 11 (2) ◽  
pp. 189-201 ◽  
Author(s):  
Masakiyo Miyazawa ◽  
Nico M. van Dijk

This note studies the comparison of finite-buffer and nonexponential batch arrival systems of the form Gx/M/c/c + N with the corresponding systems, with N replaced by N', where N' can be smaller, larger, or infinite. If N' = ∞ the service times can be arbitrarily distributed. Both comparison and error bounds are obtained for performance measures such as the throughput, the idle probability, and the active server distribution. The results are of practical interest to establish computational reductions, either by infinite-space approximation or by reduced finite truncations. Two different proof techniques will be employed: the sample path approach and the Markov reward approach. The comparison of these two techniques is of interest in itself, showing the advantage and disadvantage of each.


1984 ◽  
Vol 21 (3) ◽  
pp. 661-667 ◽  
Author(s):  
Xi-Ren Cao

In this paper we study a series of servers with exponentially distributed service times. We find that the sojourn time of a customer at any server depends on the customer's past history only through the customer's interarrival time to that server. A method of calculating the conditional probabilities of sojourn times is developed.


2000 ◽  
Vol 35 (7) ◽  
pp. 665-673 ◽  
Author(s):  
Marco Rito-Palomares ◽  
Christopher Dale ◽  
Andrew Lyddiatt

2005 ◽  
Vol 42 (2) ◽  
pp. 513-530 ◽  
Author(s):  
François Baccelli ◽  
Serguei Foss ◽  
Marc Lelarge

We give the exact asymptotics of the tail of the stationary maximal dater in generalized Jackson networks with subexponential service times. This maximal dater, which is an analogue of the workload in an isolated queue, gives the time taken to clear all customers present at some time t when stopping all arrivals that take place later than t. We use the property that a large deviation of the maximal dater is caused by a single large service time at a single station at some time in the distant past of t, in conjunction with fluid limits of generalized Jackson networks, to derive the relevant asymptotics in closed form.


Author(s):  
G. Ayyappan ◽  
S. Velmurugan

This paper analyses a queueing model consisting of two units I and II connected in series, separated by a finite buffer of size N. Unit I has only one exponential server capable of serving customers one at a time. Unit II consists of c parallel exponential servers and they serve customers in groups according to the bulk service rule. This rule admits each batch served to have not less than ‘a’ and not more than ‘b’ customers such that the arriving customers can enter service station without affecting the service time if the size of the batch being served is less than ‘d’ ( a ≤ d ≤ b ). The steady stateprobability vector of the number of customers waiting and receiving service in unit I and waiting in the buffer is obtained using the modified matrix-geometric method. Numerical results are also presented. AMS Subject Classification number: 60k25 and 65k30


2018 ◽  
Vol 6 (3) ◽  
pp. 17-31
Author(s):  
Abdul Hasan Sathali ◽  
Ramanathan M

The objective of the present work was to enhancedissolution and solubility of slightly water soluble ormeloxifene hydrochloride and formulate fast dissolving tablets. The research work was two-phase process, the first phase was to enhance the solubility and dissolution of ormeloxifene. For this object drugwas processed with different solid dispersion techniques like kneading, co precipitation, melting and solvent evaporation technique with


Sign in / Sign up

Export Citation Format

Share Document