Abstract Definitions for the Symmetry Groups of the Regular Polytopes, in Terms of Two Generators. Part I: The Complete Groups

1936 ◽  
Vol 32 (2) ◽  
pp. 194-200 ◽  
Author(s):  
H. S. M. Coxeter ◽  
J. A. Todd

The groups of rotations that transform the regular polygons and polyhedra into themselves have. been studied for many years. Lately, increasing interest has been shown in the “extended” groups, which include reflections (and other congruent transformations of negative determinant). Todd has proved that every such group can be defined abstractly in the formThis group is denoted by [k1, k2, …, kn−1], and is the complete (extended) group of symmetries of either of the reciprocal n.-dimensional polytopes {k1, k2,…, kn−1}, {kn−1, kn−2,…, k1}. There is a sense in which these statements hold for arbitrarily large values of the k's. But here we are concerned only with the cases where the groups and the polytopes are finite. The finite groups are[k] is simply isomorphic with the dihedral group of order 2k (e.g. [2], the Vierergruppe). [3, 3,…, 3] with n − 1 threes, or briefly [3n−1], is simply isomorphic with the symmetric group of order (n + 1)!.

MATEMATIKA ◽  
2019 ◽  
Vol 35 (1) ◽  
pp. 59-65
Author(s):  
Rabiha Mahmoud ◽  
Amira Fadina Ahmad Fadzil ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

Let G be a dihedral group and its conjugacy class graph. The Laplacian energy of the graph, is defined as the sum of the absolute values of the difference between the Laplacian eigenvalues and the ratio of twice the edges number divided by the vertices number. In this research, the Laplacian matrices of the conjugacy class graph of some dihedral groups, generalized quaternion groups, quasidihedral groups and their eigenvalues are first computed. Then, the Laplacian energy of the graphs are determined.


1970 ◽  
Vol 22 (1) ◽  
pp. 36-40 ◽  
Author(s):  
J. W. Wamsley

Mennicke (2) has given a class of three-generator, three-relation finite groups. In this paper we present a further class of three-generator, threerelation groups which we show are finite.The groups presented are defined as:with α|γ| ≠ 1, β|γ| ≠ 1, γ ≠ 0.We prove the following result.THEOREM 1. Each of the groups presented is a finite soluble group.We state the following theorem proved by Macdonald (1).THEOREM 2. G1(α, β, 1) is a finite nilpotent group.1. In this section we make some elementary remarks.


1974 ◽  
Vol 26 (3) ◽  
pp. 600-607 ◽  
Author(s):  
R. C. Griffiths

The permanent of an n × n matrix A = (aij) is defined aswhere Sn is the symmetric group of order n. For a survey article on permanents the reader is referred to [2]. An unresolved conjecture due to van der Waerden states that if A is an n × n doubly stochastic matrix; then per (A) ≧ n!/nn, with equality if and only if A = Jn = (1/n).


1973 ◽  
Vol 25 (5) ◽  
pp. 941-959 ◽  
Author(s):  
Y. J. Abramsky ◽  
H. A. Jahn ◽  
R. C. King

Frobenius [2; 3] introduced the symbolsto specify partitions and the corresponding irreducible representations of the symmetric group Ss.


1959 ◽  
Vol 11 ◽  
pp. 59-60 ◽  
Author(s):  
Hirosi Nagao

Let G be a finite group of order g, andbe an absolutely irreducible representation of degree fμ over a field of characteristic zero. As is well known, by using Schur's lemma (1), we can prove the following orthogonality relations for the coefficients :1It is easy to conclude from (1) the following orthogonality relations for characters:whereand is 1 or 0 according as t and s are conjugate in G or not, and n(t) is the order of the normalize of t.


1980 ◽  
Vol 32 (4) ◽  
pp. 957-968 ◽  
Author(s):  
G. H. Chan ◽  
M. H. Lim

Let U be a k-dimensional vector space over the complex numbers. Let ⊗m U denote the mth tensor power of U where m ≧ 2. For each permutation σ in the symmetric group Sm, there exists a linear mapping P(σ) on ⊗mU such thatfor all x1, …, xm in U.Let G be a subgroup of Sm and λ an irreducible (complex) character on G. The symmetrizeris a projection of ⊗ mU. Its range is denoted by Uλm(G) or simply Uλ(G) and is called the symmetry class of tensors corresponding to G and λ.


1938 ◽  
Vol 34 (3) ◽  
pp. 316-320
Author(s):  
T. E. Easterfield

It has been shown by Kulakoff that if G is a group, not cyclic, of order pl, p being an odd prime, the number of subgroups of G of order pk, for 0 < k < l, is congruent to 1 + p (mod p2); and by Hall that if G is any group of finite order whose Sylow subgroups of G of order pk, p being odd, are not cyclic, then, for 0 < k < l, the number of subgroups of G of order pk is congruent to 1 + p (mod p2). No results were given for the case p = 2. In the present paper it is shown that analogous results hold for the case p = 2, but that the role of the cyclic groups is played by groups of four exceptional types: the cyclic groups themselves, and three non-Abelian types. These groups are defined as follows:(1) The dihedral group, of order 2k, generated by A and B, where(2) The quaternion group, of order 2k, generated by A and B, where(3) The "mixed" group, of order 2k, generated by A and B, where


1994 ◽  
Vol 49 (3) ◽  
pp. 463-467 ◽  
Author(s):  
Xingde Jia

Let M be a finite quasigroup of order n. For any integer k ≥ 2, let H(k, M) be the smallest positive integer h such that there exist h subsets Ai (i = 1, 2, …, h) such that Ai … Ah = M and |Ai| = k for every i = 1, 2, …, h. Define H(k, n) = max H(k, M). It is proved in this paper that.


1964 ◽  
Vol 16 ◽  
pp. 191-203 ◽  
Author(s):  
G. de B. Robinson

The purpose of this paper is to clarify and sharpen the argument in the last two chapters of the author's Representation theory of the symmetric group(3). When these chapters were written the peculiar properties of the case p = 2 were not fully appreciated. No difficulty arises in the definition of the block in terms of the p-core, or in the application of the general modular theory based on the formula


Sign in / Sign up

Export Citation Format

Share Document