The Compton Effect in Wave Mechanics

Author(s):  
P. A. M. Dirac

The problem of the scattering of radiation by a free electron has been treated by the author on the basis of Heisenberg's matrix mechanics, which was first modified to be in agreement with the principle of relativity. The main point of this modification is that, whereas in the non-relativity theory one deals with matrices whose elements vary with the time according to the law eiwt, in the relativity theory the elements of the matrices must vary according to the law eiwt′ where t′ = t − (l1x1 + l2x2 + l3x3)/c if they are to determine correctly the radiation emitted in the direction specified by the direction cosines (l1, l2, l3), x1x2 and x3 being the coordinates of the electron at the time t. These matrices were obtained by writing the Hamiltonian equation of the system in the formwhere W′ is a variable canonically conjugate to t′ and H′ commutes with t′, and then using H′ as an ordinary Hamiltonian function of a dynamical, system that has W′ for its energy and t′ for its time variable.

The relativity theory of Weyl and Eddington is an extension of what may be described as the geometric principle of relativity to the metrics of space. This extension permits the inclusion of electromagnetic phenomena into a system of geometry and metrics so that we have a consistent and fundamental scheme for the description of gravitational and electromagnetic phenomena. Recently considerable light has been thrown on the relation between classical and quantum theory by the work of de Broglie, Schroedinger and others.


2011 ◽  
Vol 110-116 ◽  
pp. 3750-3754
Author(s):  
Jun Lu ◽  
Xue Mei Wang ◽  
Ping Wu

Within the framework of the quantum phase space representation established by Torres-Vega and Frederick, we solve the rigorous solutions of the stationary Schrödinger equations for the one-dimensional harmonic oscillator by means of the quantum wave-mechanics method. The result shows that the wave mechanics and the matrix mechanics are equivalent in phase space, just as in position or momentum space.


1914 ◽  
Vol 33 ◽  
pp. 177-182
Author(s):  
James B. Ritchie

It has been shown in a former paper that an equation of the formcan be applied to give close representation of results in the determination of the law of decrease of torsional oscillations of wires of different materials, when the range of oscillation is large in comparison with the palpable limits of elasticity.


1897 ◽  
Vol 21 ◽  
pp. 342-359
Author(s):  
Thomas Muir

1. Cayley commences his third paper on Skew Determinants (May, 1854) by recalling his development of them in terms of Pfaffians, and then goes on to say:—“J'ai trouve recemment une formule analogue pour le developpement d'un déterminant gauche borde, tel queCette formule est:and he explains that the expressions 12, 1234, etc., are Pfaffians, whose law of formation is—12 = 12,1234 = 12·34 + 13·42 + 14·23,123456 = 12·34·56 + 13·45·62 + 14·56·23 + 15·62·34 + 16·23·45 + 12·35·64 + 13·46·25 +14·52·36 +15·63·42 + 16·24·53 + 12·36·45 + 13·42·56 + 14·53·62 + 15·64·23 + 16·25·34.No proof is given, and the law of formation of the development itself is not explained.


1970 ◽  
Vol 7 (02) ◽  
pp. 432-439 ◽  
Author(s):  
William E. Strawderman ◽  
Paul T. Holmes

Let X 1, X2, X 3 , ··· be independent, identically distributed random variables on a probability space (Ω, F, P); and with a continuous distribution function. Let the sequence of indices {Vr } be defined as Also define The following theorem is due to Renyi [5].


The new quantum theory, based on the assumption that the dynamical variables do not obey the commutative law of multiplication, has by now been developed sufficiently to form a fairly complete theory of dynamics. One can treat mathematically the problem of any dynamical system composed of a number of particles with instantaneous forces acting between them, provided it is describable by a Hamiltonian function, and one can interpret the mathematics physically by a quite definite general method. On the other hand, hardly anything has been done up to the present on quantum electrodynamics. The questions of the correct treatment of a system in which the forces are propagated with the velocity of light instead of instantaneously, of the production of an electromagnetic field by a moving electron, and of the reaction of this field on the electron have not yet been touched. In addition, there is a serious difficulty in making the theory satisfy all the requirements of the restricted principle of relativity, since a Hamiltonian function can no longer be used. This relativity question is, of course, connected with the previous ones, and it will be impossible to answer any one question completely without at the same time answering them all. However, it appears to be possible to build up a fairly satisfactory theory of the emission of radiation and of the reaction of the radiation field on the emitting system on the basis of a kinematics and dynamics which are not strictly relativistic. This is the main object of the present paper. The theory is noil-relativistic only on account of the time being counted throughout as a c-number, instead of being treated symmetrically with the space co-ordinates. The relativity variation of mass with velocity is taken into account without difficulty. The underlying ideas of the theory are very simple. Consider an atom interacting with a field of radiation, which we may suppose for definiteness to be confined in an enclosure so as to have only a discrete set of degrees of freedom. Resolving the radiation into its Fourier components, we can consider the energy and phase of each of the components to be dynamical variables describing the radiation field. Thus if E r is the energy of a component labelled r and θ r is the corresponding phase (defined as the time since the wave was in a standard phase), we can suppose each E r and θ r to form a pair of canonically conjugate variables. In the absence of any interaction between the field and the atom, the whole system of field plus atom will be describable by the Hamiltonian H ═ Σ r E r + H o equal to the total energy, H o being the Hamiltonian for the atom alone, since the variables E r , θ r obviously satisfy their canonical equations of motion E r ═ — ∂H/∂θ r ═ 0, θ r ═ ∂H/∂E r ═ 1.


Author(s):  
Suman Seth

This article discusses the history of quantum physics, beginning with an analysis of the process through which a community of quantum theorists and experimentalists came into being. In particular, it traces the roots and fruits of Max Planck’s papers in irreversible processes in nature. It proceeds by exploring the origin and subsequent development of Niels Bohr’s so-called ‘planetary model’ of the atom, focusing on the extension of the model by Arnold Sommerfeld and members of his school as well to Bohr’s use of his principles of correspondence and adiabatic invariance. It also considers the post-war years, as the problems of atomic spectroscopy sparked the development of new methodological approaches to quantum theory. Finally, it offers a history of the two distinct new forms of quantum mechanics put forward in the mid-1920s: Werner Heisenberg, Max Born, and Pascual Jordan’s matrix mechanics, and Erwin Schrödinger’s wave mechanics.


2007 ◽  
Vol 37 (2) ◽  
pp. 247-270 ◽  
Author(s):  
David C. Cassidy

Beginning early in the 20th century spectroscopists attributed the infrared band spectra emitted by diatomic molecules to quantum vibration and rotation modes of the molecules. Because of these relatively simple motions, band spectra offered a convenient .rst phenomenon to which to apply formulations of the new quan-tum mechanics in 1926. In his .rst paper, completed in Cambridge in May 1926, Oppenheimer presented a derivation of the frequencies and relative intensities of the observed spectral lines on the basis of Paul Dirac's new quantum commutator algebra. At the same time Lucy Mensing published a similar derivation utiliz-ing matrix mechanics, as did Edwin Fues utilizing wave mechanics. Analyses of Oppenheimer's paper and of its historical and scienti.c contexts offer insights into the new quantum mechanics and its utilization and reception during this brief period of competing formalisms, and into the characteristic features of Oppenheimer's later style of research and publication.


1999 ◽  
Vol 64 (2) ◽  
pp. 486-488 ◽  
Author(s):  
John L. Bell

By Frege's Theorem is meant the result, implicit in Frege's Grundlagen, that, for any set E, if there exists a map υ from the power set of E to E satisfying the conditionthen E has a subset which is the domain of a model of Peano's axioms for the natural numbers. (This result is proved explicitly, using classical reasoning, in Section 3 of [1].) My purpose in this note is to strengthen this result in two directions: first, the premise will be weakened so as to require only that the map υ be defined on the family of (Kuratowski) finite subsets of the set E, and secondly, the argument will be constructive, i.e., will involve no use of the law of excluded middle. To be precise, we will prove, in constructive (or intuitionistic) set theory, the followingTheorem. Let υ be a map with domain a family of subsets of a set E to E satisfying the following conditions:(i) ø ϵdom(υ)(ii)∀U ϵdom(υ)∀x ϵ E − UU ∪ x ϵdom(υ)(iii)∀UV ϵdom(5) υ(U) = υ(V) ⇔ U ≈ V.Then we can define a subset N of E which is the domain of a model of Peano's axioms.


Author(s):  
Salerno Francesco

The issue of treaties establishing objective regimes has been neglected by the Vienna Convention on the Law of Treaties. Building on the principle of relativity of treaties, the Convention only deals with the effects of specific treaty rules on third states. This chapter argues that third states never acquire the same status of states parties, even when they consent to the specific treaty rules that affect them. Analysing the significance of treaties establishing objective regimes under general international law, it clarifies that such treaties may affect third states even when they do not embody rules of customary law. Due to the relevance for the international legal order of the unique erga omnes regime created by the treaty, the situation regulated by it can no longer fall within the scope of the absolute ‘freedom’ previously accorded to third states.


Sign in / Sign up

Export Citation Format

Share Document