Double Fourier series and boundary value problems

Author(s):  
A. E. Green

1. Problems in elasticity which are concerned with isotropic rectangular plates have attracted the attention of many writers both from the theoretical and practical points of view. When the boundary conditions are of the simply supported type the solution of the problems is usually simple, although when double Fourier series are used the validity of such solutions is not very clearly shown in most cases. Satisfactory exact solutions for many classical problems in which the edges of the rectangular plate are clamped have only been obtained in recent years, but approximate strain energy methods often gave results which were useful for practical purposes.

Author(s):  
C W Bert ◽  
M Malik

This paper considers linear free vibrations of thin isotropic rectangular plates with combinations of the classical boundary conditions of simply supported, clamped and free edges and the mathematically possible condition of guided edges. The total number of plate configurations with the classical boundary conditions are known to be twenty-one. The inclusion of the guided edge condition gives rise to an additional thirty-four plate configurations. Of these additional cases, twenty-one cases have exact solutions for which frequency equations in explicit or transcendental form may be obtained. The frequency equations of these cases are given and, for each case, results of the first nine mode frequencies are tabulated for a range of the plate aspect ratios.


1955 ◽  
Vol 22 (4) ◽  
pp. 465-472
Author(s):  
H. M. Berger

Abstract Simplified nonlinear equations for a flat plate with large deflections are derived by assuming that the strain energy due to the second invariant of the middle-surface strains can be neglected. Computations using the solution of these simplified equations are carried out for the deflection of uniformly loaded circular and rectangular plates with various boundary conditions. Comparisons are made with available numerical solutions of the exact equations. The deflections found by this approach are then used to obtain the stresses for the circular plate and the resulting stresses are compared with existing solutions. In all the cases where comparisons could be made, the deflections and stresses agree with the exact solutions within the accuracy required for engineering purposes.


1963 ◽  
Vol 14 (4) ◽  
pp. 349-356 ◽  
Author(s):  
I. T. Cook ◽  
K. C. Rockey

SummaryThe paper presents a solution for the buckling under shear of a rectangular plate which is clamped along one edge and simply-supported along the other edges. The authors have also re-examined the case of one pair of opposite edges clamped and the other pair simply-supported.


1958 ◽  
Vol 25 (2) ◽  
pp. 297-298
Author(s):  
H. D. Conway

Abstract A solution is given for the bending of a uniformly loaded rectangular plate, simply supported on two opposite edges and having arbitrary boundary conditions on the others. The thickness variation is taken as exponential in order to make the solution tractable, and thus closely approximates to uniform taper if the latter is small.


2019 ◽  
Vol 50 (6) ◽  
pp. 176-194
Author(s):  
Kavikant Mahapatra ◽  
SK Panigrahi

The generation of in-plane vibration in plates is an important issue and frequently occurs due to the presence of excitations in the ship’s hull due to turbulent fluid flows, turbulent airflow excitation on aerospace structures, gear system subjected to axial excitation, assemblies housing piezoelectric crystals and sandwiched plates, and so on. The present analysis aims to establish a universal and numerically efficient method for determination of in-plane vibration characteristics of isotropic rectangular plates both for conventional and general boundary conditions. The new in-plane Fourier series and displacement function of the plate have been developed using beam displacement functions in x and y directions, respectively, under in-plane condition. A modified Fourier series assumption for the in-plane beam displacement has been utilised and further developed as plate displacement function. The computational efficiency of the present method is compared in terms of convergence of natural frequency parameter, speed of execution and manual convenience to reduce human errors with the frequently used Fourier series method by various researchers. Rayleigh–Ritz procedure has been applied to determine the in-plane natural frequencies. The mode shapes for few conventional and generally varying boundary conditions have been presented and analysed. The dynamic response has been obtained and analysed in terms of the in-plane mobility and power flow characteristics of the plate under varying boundary conditions. The validity of results obtained by the current method has shown excellent accuracy and faster convergence with the existing results. The present results can provide a benchmark to analyse the dynamic in-plane response of plate systems being used for built-up structures in real engineering applications.


1969 ◽  
Vol 73 (703) ◽  
pp. 607-608 ◽  
Author(s):  
A. C. Mills

In ref. (1) Pope presents a theoretical analysis of the buckling of rectangular plates tapered in thickness under uniform load in the direction of taper. An experimental investigation into the end load buckling problem for a plate having simply-supported edges with the sides prevented from moving normally in the plane of the plate is described in ref. (2). For these boundary conditions the theoretical solution is exact. However, the compatability equation is not satisfied exactly when the sides are free to move in the plane of the plate. This experimental investigation demonstrates that the buckling load is nevertheless adequately predicted by the analysis in these circumstances.


1973 ◽  
Vol 40 (3) ◽  
pp. 745-751 ◽  
Author(s):  
D. S. Chehil ◽  
S. S. Dua

A perturbation technique is employed to determine the critical buckling stress of a simply supported rectangular plate of variable thickness. The differential equation is derived for a general thickness variation. The problem of bending, vibration, buckling, and that of dynamic stability of a variable thickness plate can be deduced from this equation. The problem of buckling of a rectangular plate with simply supported edges and having general variation in thickness in one direction is considered in detail. The solution is presented in a form such as can be easily adopted for computing critical buckling stress, once the thickness variation is known. The numerical values obtained from the present analysis are in excellent agreement with the published results.


Author(s):  
Y. P. Liu ◽  
C. G. Wang ◽  
H. F. Tan ◽  
M. K. Wadee

A model is proposed based on a Fourier series method to analyse the interactive bending wrinkling behaviour of inflated beams. The whole wrinkling evolution is tracked and divided into three stages by identifying the bifurcations of the equilibrium path. The critical wrinkling and failure moments of the inflated beam can then be predicted. The global–local interactive buckling pattern is elucidated by the proposed theoretical model and also verified by non-contact experimental tests. The effects of geometric parameters, internal pressure and boundary conditions on the buckling of inflated beams are investigated finally. The results reveal that the interactive buckling characteristics of an inflated beam under bending are more sensitive to the dimensions of the structure and boundary conditions. We find that for beams which are simply supported at both ends or clamped and simply supported, boundary conditions may prevent the wrinkling formation. The results provide significant support for our understanding of the bending wrinkling behaviour of inflated beams.


Sign in / Sign up

Export Citation Format

Share Document