interactive buckling
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 2)

Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 3371-3381
Author(s):  
Yanchun Li ◽  
Tianhua Zhou ◽  
Dong Li ◽  
Jiahao Ding ◽  
Chenyang Li

2021 ◽  
Vol 134 ◽  
pp. 103735
Author(s):  
Manuel Ferretti ◽  
Simona Di Nino ◽  
Angelo Luongo
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Xingyou Yao

The objective of this paper is to investigate the buckling behavior and design method of the ultimate strength for the cold-formed steel (CFS) built-up I-sectional columns under axial compression which failed in distortional buckling and interactive buckling. A total of 56 CFS built-up I-sectional columns subjected to axial compression were tested, and the different buckling modes and ultimate strengths were analyzed in detail by varying the thickness, the length, the spacing of screws, the end fastener group, and the cross-sectional dimensions of CFS built-up I-sectional columns. It was shown in the test that noticeable interaction of local and distortional buckling or interaction of local, distortional, and global buckling was observed for the built-up I-sectional columns with different lengths and cross-sectional dimensions. A finite element model (FEM) was developed and validated with experimental results. A further parametric study has been conducted including different cross sections and slenderness ratios for the built-up I-sectional columns. The load-carrying capacities obtained from the experimental and numerical study were used to investigate the feasibility of the current direct strength method (DSM) when DSM was applied to CFS built-up I-sectional columns. The comparison results showed that the current DSM is not safe for CFS built-up columns failed in distortional buckling and interactive buckling. Therefore, the improved design formulas were proposed, and their accuracy was verified by using finite element analysis (FEA) and experimental results of CFS built-up I-sectional columns subjected to axial compression.


2021 ◽  
Vol 164 ◽  
pp. 107793
Author(s):  
Xianlei Cao ◽  
Rui Zhong ◽  
Yong Xu ◽  
Chao Cheng ◽  
Shitong Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document