The resolution of monoidal Cremona transformations of three-dimensional space

Author(s):  
D. W. Babbage

A Cremona transformation Tn, n′ between two three-dimensional spaces is said to be monoidal if the surfaces of order n in one space which form the homaloidal system corresponding to the planes of the second space have a fixed (n − 1)-ple point O. If the surfaces of order n′ forming the homaloidal system in the second space have a fixed (n′ − 1)-ple point O′, the transformation is said to be bimonoidal. A particularly simple bimonoidal transformation is that which transforms lines through O into lines through O′, and planes through O into planes through O′. Such a transformation we shall call an M-transformation. Its equations can, by suitable choice of coordinates, be expressed in the formwhere φn−1(x, y, z, w) = 0, φn(x, y, z, w) = 0 are monoids with vertex (0, 0, 0, 1).

1925 ◽  
Vol 22 (5) ◽  
pp. 694-699 ◽  
Author(s):  
H. W. Turnbull

§ 1. The six Plücker coordinates of a straight line in three dimensional space satisfy an identical quadratic relationwhich immediately shows that a one-one correspondence may be set up between lines in three dimensional space, λ, and points on a quadric manifold of four dimensions in five dimensional space, S5. For these six numbers pij may be considered to be six homogeneous coordinates of such a point.


1956 ◽  
Vol 8 ◽  
pp. 293-304 ◽  
Author(s):  
E. S. Barnes

Bambah (1) has recently determined the most economical covering of three dimensional space by equal spheres whose centres form a lattice, the density of this covering being1.1.As is well known, this problem may be interpreted in terms of the inhomogeneous minimum of a positive definite quadratic form.


1994 ◽  
Vol 38 ◽  
pp. 649-656
Author(s):  
Anthony J. Klimasara

Abstract The Lachance-Traill, and Lucas-Tooth-Price matrix correction equations/functions for XRF determined concentrations can be graphically interpreted with the help of three dimensional graphics. Statistically derived Lachance-Traill and Lucas-Tooth-Price matrix correction equations can be represented as follows: 1 where: Ci -elemental concentration of element “i” Ij -X-Ray intensity representing element “i” Ai0 -regression intercept for element “i” Ai -regression coefficient Zj -correction term defined below 2 Ai0, Aj , and Zi together represent the results of a multi-dimensional contribution. li, Ci, and Zi can be represented in three dimensional Cartesian space by X, Y and Z. These three variables are connected by a matrix correction equation that can be graphed as the function Y = F(X, Z), which represents a plane in three dimensional space. It can be seen that each chemical element will deliver a different set of coefficients in the equation of a plane that is called here a calibration plane. The commonly known and used two dimensional calibration plot is a “shadow” of the three dimensional real calibration points. These real (not shadow) points reside on a regression calibration plane in this three dimensional space. Lachance-Traill and Lucas-Tooth-Price matrix correction equations introduce the additional dimension(s) to the two dimensional flat image of uncorrected data. Illustrative examples generated by three dimensional graphics will be presented.


1926 ◽  
Vol 45 (3) ◽  
pp. 230-244 ◽  
Author(s):  
Marion C. Gray

The differential equation of the conduction of heat in ordinary three-dimensional space is generally written in the formwhere v denotes the temperature of the medium at time t. For a medium in which the temperature varies only in one direction, e.g. an infinite cylinder with the temperature varying along the axis, the equation is


1927 ◽  
Vol 46 ◽  
pp. 206-209 ◽  
Author(s):  
Pierre Humbert

It is well known that two problems of harmonic analysis in ordinary three-dimensional space can be solved by Mathieu's functions, namely, (a) harmonic analysis for an orthogonal system of elliptic (or hyperbolic) cylinders,(b) harmonic analysis for a system of confocal paraboloïds,


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document