M-structure in Banach spaces

Author(s):  
F. Cunningham

L-structure in a Banach space X was defined in (3) by L-projections, that is projections P satisfyingfor all x ∈ X. The significance of L-structure is shown by the following facts: (1) All L-projections on X commute and together form a complete Boolean algebra. (2) X can be isometrically represented as a vector-valued L1 on a measure space constructed from the Boolean algebra of its L-projections (2). (3) L1-spaces in the ordinary sense are characterized among Banach spaces by properties equivalent to having so many L-projections that the representation in (2) is everywhere one-dimensional.

1977 ◽  
Vol 24 (2) ◽  
pp. 129-138 ◽  
Author(s):  
R. J. Fleming ◽  
J. E. Jamison

AbstractLet Lp(Ω, K) denote the Banach space of weakly measurable functions F defined on a finite measure space and taking values in a separable Hilbert space K for which ∥ F ∥p = ( ∫ | F(ω) |p)1/p < + ∞. The bounded Hermitian operators on Lp(Ω, K) (in the sense of Lumer) are shown to be of the form , where B(ω) is a uniformly bounded Hermitian operator valued function on K. This extends the result known for classical Lp spaces. Further, this characterization is utilized to obtain a new proof of Cambern's theorem describing the surjective isometries of Lp(Ω, K). In addition, it is shown that every adjoint abelian operator on Lp(Ω, K) is scalar.


1979 ◽  
Vol 31 (3) ◽  
pp. 628-636 ◽  
Author(s):  
Francis Sullivan

Let X be a real Banach space. According to von Neumann's famous geometrical characterization X is a Hilbert space if and only if for all x, y ∈ XThus Hilbert space is distinguished among all real Banach spaces by a certain uniform behavior of the set of all two dimensional subspaces. A related characterization of real Lp spaces can be given in terms of uniform behavior of all two dimensional subspaces and a Boolean algebra of norm-1 projections [16]. For an arbitrary space X, one way of measuring the “uniformity” of the set of two dimensional subspaces is in terms of the real valued modulus of rotundity, i.e. for The space is said to be uniformly rotund if for each 0 we have .


2004 ◽  
Vol 77 (3) ◽  
pp. 365-370 ◽  
Author(s):  
J. Diestel ◽  
W. J. Ricker

AbstractThis note improves two previous results of the second author. They turn out to be special cases of our main theorem which states: A Banach space X has the property that the strong closure of every abstractly σ-complete Boolean algebra of projections in X is Bade complete if and only if X does not contain a copy of the sequence space ℓ∞.


Author(s):  
Dongni Tan ◽  
Xujian Huang

Abstract We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$ , there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.


1971 ◽  
Vol 23 (3) ◽  
pp. 468-480 ◽  
Author(s):  
N. A. Friedman ◽  
A. E. Tong

Representation theorems for additive functional have been obtained in [2, 4; 6-8; 10-13]. Our aim in this paper is to study the representation of additive operators.Let S be a compact Hausdorff space and let C(S) be the space of real-valued continuous functions defined on S. Let X be an arbitrary Banach space and let T be an additive operator (see § 2) mapping C(S) into X. We will show (see Lemma 3.4) that additive operators may be represented in terms of a family of “measures” {μh} which take their values in X**. If X is weakly sequentially complete, then {μh} can be shown to take their values in X and are vector-valued measures (i.e., countably additive in the norm) (see Lemma 3.7). And, if X* is separable in the weak-* topology, T may be represented in terms of a kernel representation satisfying the Carathéordory conditions (see [9; 11; §4]):


1961 ◽  
Vol 13 ◽  
pp. 505-518 ◽  
Author(s):  
Gregers L. Krabbe

Let be the Boolean algebra of all finite unions of subcells of the plane. Denote by εpthe algebra of all linear bounded transformations of Lp(— ∞, ∞) into itself. Suppose for a moment that p = 2, and let Rp be an involutive abelian subalgebra of εp if Rp is also a Banach space and if Tp ∈ Rp, then:(i) The family of all homomorphic mappings of into the algebra Rp contains a member EPT such that(1)


1986 ◽  
Vol 29 (3) ◽  
pp. 309-327 ◽  
Author(s):  
W. Lamb

In [8], Rooney defines a class of complex-valued functions ζ each of which is analytic in a vertical strip α(ζ)< Res < β(ζ) in the complex s-plane and satisfies certain growth conditions as |Im s| →∞ along fixed lines Re s = c lying within this strip. These conditions mean that the functionsfulfil the requirements of the one-dimensional Mihlin-Hörmander theorem (see [6, p. 417]) and so can be regarded as Fourier multipliers for the Banach spaces . Consequently, each function gives rise to a family of bounded operators W[ζ,σ] σ ∈(α(ζ),β(ζ)), on , 1<p<∞.


2002 ◽  
Vol 54 (6) ◽  
pp. 1165-1186 ◽  
Author(s):  
Oscar Blasco ◽  
José Luis Arregui

AbstractLet X be a complex Banach space and let Bp(X) denote the vector-valued Bergman space on the unit disc for 1 ≤ p < ∞. A sequence (Tn)n of bounded operators between two Banach spaces X and Y defines a multiplier between Bp(X) and Bq(Y) (resp. Bp(X) and lq(Y)) if for any function we have that belongs to Bq(Y) (resp. (Tn(xn))n ∈ lq(Y)). Several results on these multipliers are obtained, some of them depending upon the Fourier or Rademacher type of the spaces X and Y. New properties defined by the vector-valued version of certain inequalities for Taylor coefficients of functions in Bp(X) are introduced.


1974 ◽  
Vol 76 (1) ◽  
pp. 157-159 ◽  
Author(s):  
Richard Evans

In the structure theory of Banach spaces as developed in (1), an important role is played by subspaces which are the ranges of projections having norm properties akin to those of the classical Banach spaces. A linear projection e on a Banach space V is called an M-projection ifand an L-projection if, insteadA closed subspace J of V is called an M-Summand if it is the range of an M-projection and an M-Ideal if J0 is the range of an L-projection in V′. Every M-Summand is an M-Ideal but the reverse is false.


1989 ◽  
Vol 32 (2) ◽  
pp. 317-327 ◽  
Author(s):  
Erik Christensen ◽  
Allan M. Sinclair

Milutin's Theorem states that if X and Y are uncountable metrizable compact Hausdorff spaces, then C(X) and C(Y) are isomorphic as Banach spaces [15, p. 379]. Thus there is only one isomorphism class of such Banach spaces. There is also an extensive theory of the Banach–Mazur distance between various classes of classical Banach spaces with the deepest results depending on probabilistic and asymptotic estimates [18]. Lindenstrauss, Haagerup and possibly others know that as Banach spaceswhere H is the infinite dimensional separable Hilbert space, R is the injective II 1-factor on H, and ≈ denotes Banach space isomorphism. Haagerup informed us of this result, and suggested considering completely bounded isomorphisms; it is a pleasure to acknowledge his suggestion. We replace Banach space isomorphisms by completely bounded isomorphisms that preserve the linear structure and involution, but not the product. One of the two theorems of this paper is a strengthened version of the above result: if N is an injective von Neumann algebra with separable predual and not finite type I of bounded degree, then N is completely boundedly isomorphic to B(H). The methods used are similar to those in Banach space theory with complete boundedness needing a little care at various points in the argument. Extensive use is made of the conditional expectation available for injective algebras, and the methods do not apply to the interesting problems of completely bounded isomorphisms of non-injective von Neumann algebras (see [4] for a study of the completely bounded approximation property).


Sign in / Sign up

Export Citation Format

Share Document