Characteristics of GWrSn

1976 ◽  
Vol 79 (3) ◽  
pp. 433-441
Author(s):  
A. G. Williams

The ‘characteristics’ of the wreath product GWrSn, where G is a finite group, are certain polynomials (to be defined in section 2) which are generating functions for the simple characters of GWrSn. Schur (8) first used characteristics of the symmetric group. Specht (9) defined characteristics for GWrSn and found a relation between the characteristics of GWrSn and those of Sn which determined the simple characters of GWrSn. The object of this paper is to describe the p-block structure of GWrSn in the case where p is not a factor of the order of G. We use the relationship between the characteristics of GWrSn and those of Sn, which we deduce from a knowledge of the simple characters of GWrSn (these can be determined, independently of Specht's work, by using Clifford theory).

2020 ◽  
pp. 1-7
Author(s):  
Omar Tout

Abstract It is well known that the pair $(\mathcal {S}_n,\mathcal {S}_{n-1})$ is a Gelfand pair where $\mathcal {S}_n$ is the symmetric group on n elements. In this paper, we prove that if G is a finite group then $(G\wr \mathcal {S}_n, G\wr \mathcal {S}_{n-1}),$ where $G\wr \mathcal {S}_n$ is the wreath product of G by $\mathcal {S}_n,$ is a Gelfand pair if and only if G is abelian.


2008 ◽  
Vol 144 (2) ◽  
pp. 423-438 ◽  
Author(s):  
TORU OHMOTO

AbstractIn this paper, for a possibly singular complex variety X, generating functions of total orbifold Chern homology classes of the symmetric products SnX are given. These are very natural “class versions” of known generating function formulae of (generalized) orbifold Euler characteristics of SnX. Our Chern classes work covariantly for proper morphisms. We state the result more generally. Let G be a finite group and Gn the wreath product G ∼ Sn. For a G-variety X and a group A, we show a “Dey–Wohlfahrt type formula“ for equivariant Chern–Schwartz–MacPherson classes associated to Gn-representations of A (Theorem 1ċ1 and 1ċ2). When X is a point, our formula is just the classical one in group theory generating numbers |Hom(A, Gn)|.


10.37236/4831 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Ashish Mishra ◽  
Murali K. Srinivasan

Let $G$ be a finite group acting on the finite set $X$ such that the corresponding (complex) permutation representation is multiplicity free. There is a natural rank and order preserving action of the wreath product $G\sim S_n$ on the generalized Boolean algebra $B_X(n)$. We explicitly block diagonalize the commutant of this action.


Author(s):  
Martin W. Liebeck

AbstractA permutation group G on a finite set Ω is always exposable if whenever G stabilises a switching class of graphs on Ω, G fixes a graph in the switching class. Here we consider the problem: given a finite group G, which permutation representations of G are always exposable? We present solutions to the problem for (i) 2-generator abelian groups, (ii) all abelian groups in semiregular representations. (iii) generalised quaternion groups and (iv) some representations of the symmetric group Sn.


2020 ◽  
pp. 1-12 ◽  
Author(s):  
ADRIEN LE BOUDEC

We consider the finitely generated groups acting on a regular tree with almost prescribed local action. We show that these groups embed as cocompact irreducible lattices in some locally compact wreath products. This provides examples of finitely generated simple groups quasi-isometric to a wreath product $C\wr F$ , where $C$ is a finite group and $F$ a non-abelian free group.


2017 ◽  
Vol 16 (02) ◽  
pp. 1750025 ◽  
Author(s):  
Jinke Hai ◽  
Shengbo Ge ◽  
Weiping He

Let [Formula: see text] be a finite group and let [Formula: see text] be the holomorph of [Formula: see text]. If [Formula: see text] is a finite nilpotent group or a symmetric group [Formula: see text] of degree [Formula: see text], then the normalizer property holds for [Formula: see text].


2017 ◽  
Vol 16 (04) ◽  
pp. 1750065 ◽  
Author(s):  
Ali Reza Moghaddamfar

Let [Formula: see text] be the prime graph associated with a finite group [Formula: see text] and [Formula: see text] be the degree pattern of [Formula: see text]. A finite group [Formula: see text] is said to be [Formula: see text]-fold [Formula: see text]-characterizable if there exist exactly [Formula: see text] nonisomorphic groups [Formula: see text] such that [Formula: see text] and [Formula: see text]. The purpose of this paper is two-fold. First, it shows that the symmetric group [Formula: see text] is [Formula: see text]-fold [Formula: see text]-charaterizable. Second, it shows that there exist many infinite families of alternating and symmetric groups, [Formula: see text] and [Formula: see text], which are [Formula: see text]-fold [Formula: see text]-characterizable with [Formula: see text].


1996 ◽  
Vol 05 (04) ◽  
pp. 421-425 ◽  
Author(s):  
DANIEL ALTSCHULER

We show that the number of homomorphisms from a knot group to a finite group G cannot be a Vassiliev invariant, unless it is constant on the set of (2, 2p+1) torus knots. In several cases, such as when G is a dihedral or symmetric group, this implies that the number of homomorphisms is not a Vassiliev invariant.


2013 ◽  
Vol 2013 ◽  
pp. 1-17
Author(s):  
Sergey Kitaev ◽  
Jeffrey Remmel ◽  
Manda Riehl

We continue the study of the generalized pattern avoidance condition for Ck≀Sn, the wreath product of the cyclic group Ck with the symmetric group Sn, initiated in the work by Kitaev et al., In press. Among our results, there are a number of (multivariable) generating functions both for consecutive and nonconsecutive patterns, as well as a bijective proof for a new sequence counted by the Catalan numbers.


1989 ◽  
Vol 39 (2) ◽  
pp. 249-254 ◽  
Author(s):  
R. Brandl ◽  
P.A. Linnell

Let G be a finite group and let k be a field. We determine the smallest possible rank of a free kG-module that contains submodules of every possible dimension. As an application, we obtain various criteria for the wreath product of two finite groups to be a CLT-group.


Sign in / Sign up

Export Citation Format

Share Document