Consistency conditions for a finite set of projections of a function

Author(s):  
K. J. Falconer

Let H(μ, θ) be the hyperplane in Rn (n ≥ 2) that is perpendicular to the unit vector 6 and perpendicular distance μ from the origin; that is, H(μ, θ) = (x ∈ Rn: x. θ = μ). (Note that H(μ, θ) and H(−μ, −θ) are the same hyperplanes.) Let X be a proper compact convex subset of Rm. If f(x) ∈ L1(X) we will denote by F(μ, θ) the projection of f perpendicular to θ; that is, the integral of f(x) over H(μ, θ) with respect to (n − 1)-dimensional Lebesgue measure. By Fubini's Theorem, if f(x) ∈ L1(X), F(μ, θ) exists for almost all μ for every θ. Our aim in this paper is, given a finite collection of unit vectors θ1, …, θN, to characterize the F(μ, θi) that are the projections of some function f(x) with support in X for 1 ≤ i ≤ N.

Author(s):  
K. J. Falconer

Let H(t, θ) be the hyperplane in Rn (n ≥ 2) which is perpendicular to the unit vector θ, and distant t from the origin; that is H(t, θ) = {x ε Rn: x.θ = t}. (Note that H(t, θ) and H(−t, − θ) are the same hyperplane.) If f(x) εℒ1(Rn), we will denote the integral of f with respect to (n − 1)-dimensional Lebesgue measure over H(t, θ) by F(t, θ), termed the projection or sectional integral of f over H(t,θ). By Fubini's theorem, F(t, θ) exists for almost all t for any θ. Throughout this paper we will assume that f(x) has support in X, a compact convex subset of Rn. In Section 2 we examine some of the topologies that may be defined on functions on X in terms of the F(t, θ), and in the remainder of the paper we examine the extremal problem suggested by Croft (4), that of maximizing the integral of f over the set X with the constraint that the F(t, θ) are uniformly bounded above. We examine in particular how the extremal values depend on the convex set X. In the final section the extremal problem is related to a generalization of Bang's plank theorem and the theory of capacities, and several conjectures are proposed.


1979 ◽  
Vol 85 (2) ◽  
pp. 351-355 ◽  
Author(s):  
K. J. Falconer

Let H(t, θ) be the hyperplane in Rn (n ≥ 2) which is perpendicular to the unit vector θ and perpendicular distance t from the origin, that is H(t, θ) = {x ε Rn: x.θ = t} (Note that H(t, θ) and H(−t, −θ) are the same hyperplane.) If f(x)ε L1(Rn) we will denote by F(t, θ) the projection of f perpendicular to θ, that is the integral of f(x) over H(t, θ) with respect to (n − 1)-dimensional Lebesgue measure. By Fubini's Theorem, if f(x) ε L1 (Rn), F(t, θ) exists for almost all t for every θ.


Author(s):  
Michael Edelstein ◽  
Daryl Tingley

AbstractSeveral procedures for locating fixed points of nonexpansive selfmaps of a weakly compact convex subset of a Banach space are presented. Some of the results involve the notion of an asymptotic center or a Chebyshev center.


1982 ◽  
Vol 25 (3) ◽  
pp. 302-310 ◽  
Author(s):  
R. J. Gardner ◽  
S. Kwapien ◽  
D. P. Laurie

AbstractB. Grünbaum and J. N. Lillington have considered inequalities defined by three lines meeting in a compact convex subset of the plane. We prove a conjecture of Lillington and propose some conjectures of our own.


1969 ◽  
Vol 9 (1-2) ◽  
pp. 25-28 ◽  
Author(s):  
S. J. Bernau

This note shows that the set of bare points of a compact convex subset of a normed linear space is, in general, a proper subset of its set of exposed points.


1987 ◽  
Vol 29 (2) ◽  
pp. 205-220 ◽  
Author(s):  
D. A. Edwards

Let ω be a non-empty set, ℱ a Boolean σ-algebra of subsets of Ω, k a natural number, and let m:ℱ→ℝk be a non-atomic vector measure. Then, by the celebrated theorem of Liapounov [11], the range m[3F] = {m(A): A ε ℱ3F} of m is a compact convex subset of ℝk. This theorem has been generalized in a number of ways. For example Kingman and Robertson [8] and Knowles [9] have shown that, under appropriate conditions, results in the same spirit can be proved for measures taking their values in infinite-dimensional vector spaces. Another type of generalization was obtained by Dvoretsky, Wald and Wolfowitz [6,7]. What they do is to take m as above together with a natural number n≥ 1. They then consider the set Knof all vectorswhere (A1 A2,…, An) is an ordered ℱ-measurable partition of Ω (i.e. a partition whose terms A, all belong to ℱ). They prove in [6] that Kn is a compact convex subset of ℝnk and moreover that Kn is equal to the set of all vectors of the formwhere (ϕ1, ϕ2…, ϕn) is an ℱ-measurable partition of unity; i.e. it is an n-tuple of non-negative ϕr on Ω such thatLiapounov's theorem can be obtained as a corollary of this result by taking n= 2.


2003 ◽  
Vol 2003 (7) ◽  
pp. 407-433 ◽  
Author(s):  
Tadeusz Dobrowolski

The Schauder conjecture that every compact convex subset of a metric linear space has the fixed-point property was recently established by Cauty (2001). This paper elaborates on Cauty's proof in order to make it more detailed, and therefore more accessible. Such a detailed analysis allows us to show that the convex compacta in metric linear spaces possess the simplicial approximation property introduced by Kalton, Peck, and Roberts. The latter demonstrates that the original Schauder approach to solve the conjecture is in some sense “correctable.”


Author(s):  
Kok-Keong Tan

AbstractLet E be a Hausdorff topological vector space, let K be a nonempty compact convex subset of E and let f, g: K → 2E be upper semicontinuous such that for each x ∈ K, f(x) and g(x) are nonempty compact convex. Let Ω ⊂ 2E be convex and contain all sets of the form x − f(x), y − x + g(x) − f(x), for x, y ∈ K. Suppose p: K × Ω →, R satisfies: (i) for each (x, A) ∈ K × Ω and for ε > 0, there exist a neighborhood U of x in K and an open subset set G in E with A ⊂ G such that for all (y, B) ∈ K ×Ω with y ∈ U and B ⊂ G, | p(y, B) - p(x, A)| < ε, and (ii) for each fixed X ∈ K, p(x, ·) is a convex function on Ω. If p(x, x − f(x)) ≤ p(x, g(x) − f(x)) for all x ∈ K, and if, for each x ∈ K with f(x) ∩ g(x) = ø, there exists y ∈ K with p(x, y − x + g(x) − f(x)) < p(x, x − f(x)), then there exists an x0 ∈ K such that f(x0) ∩ g(x0) ≠ ø. Another coincidence theorem on a nonempty compact convex subset of a Hausdorff locally convex topological vector space is also given.


Sign in / Sign up

Export Citation Format

Share Document