Some Inequalities Related to Planar Convex Sets

1982 ◽  
Vol 25 (3) ◽  
pp. 302-310 ◽  
Author(s):  
R. J. Gardner ◽  
S. Kwapien ◽  
D. P. Laurie

AbstractB. Grünbaum and J. N. Lillington have considered inequalities defined by three lines meeting in a compact convex subset of the plane. We prove a conjecture of Lillington and propose some conjectures of our own.

Author(s):  
K. J. Falconer

Let H(μ, θ) be the hyperplane in Rn (n ≥ 2) that is perpendicular to the unit vector 6 and perpendicular distance μ from the origin; that is, H(μ, θ) = (x ∈ Rn: x. θ = μ). (Note that H(μ, θ) and H(−μ, −θ) are the same hyperplanes.) Let X be a proper compact convex subset of Rm. If f(x) ∈ L1(X) we will denote by F(μ, θ) the projection of f perpendicular to θ; that is, the integral of f(x) over H(μ, θ) with respect to (n − 1)-dimensional Lebesgue measure. By Fubini's Theorem, if f(x) ∈ L1(X), F(μ, θ) exists for almost all μ for every θ. Our aim in this paper is, given a finite collection of unit vectors θ1, …, θN, to characterize the F(μ, θi) that are the projections of some function f(x) with support in X for 1 ≤ i ≤ N.


1996 ◽  
Vol 28 (02) ◽  
pp. 384-393 ◽  
Author(s):  
Lutz Dümbgen ◽  
Günther Walther

The Hausdorff distance between a compact convex set K ⊂ ℝd and random sets is studied. Basic inequalities are derived for the case of being a convex subset of K. If applied to special sequences of such random sets, these inequalities yield rates of almost sure convergence. With the help of duality considerations these results are extended to the case of being the intersection of a random family of halfspaces containing K.


Author(s):  
Michael Edelstein ◽  
Daryl Tingley

AbstractSeveral procedures for locating fixed points of nonexpansive selfmaps of a weakly compact convex subset of a Banach space are presented. Some of the results involve the notion of an asymptotic center or a Chebyshev center.


1969 ◽  
Vol 9 (1-2) ◽  
pp. 25-28 ◽  
Author(s):  
S. J. Bernau

This note shows that the set of bare points of a compact convex subset of a normed linear space is, in general, a proper subset of its set of exposed points.


1999 ◽  
Vol 59 (1) ◽  
pp. 147-152 ◽  
Author(s):  
Poh Wah Awyong ◽  
Paul R. Scott

Let K be a planar, compact, convex set with circumradius R, diameter d, width w and inradius r, and containing no points of the integer lattice. We generalise inequalities concerning the ‘dual’ quantities (2R − d) and (w − 2r) to rectangular lattices. We then use these results to obtain corresponding inequalities for a planar convex set with two interior lattice points. Finally, we conjecture corresponding results for sets containing one interior lattice point.


1987 ◽  
Vol 29 (2) ◽  
pp. 205-220 ◽  
Author(s):  
D. A. Edwards

Let ω be a non-empty set, ℱ a Boolean σ-algebra of subsets of Ω, k a natural number, and let m:ℱ→ℝk be a non-atomic vector measure. Then, by the celebrated theorem of Liapounov [11], the range m[3F] = {m(A): A ε ℱ3F} of m is a compact convex subset of ℝk. This theorem has been generalized in a number of ways. For example Kingman and Robertson [8] and Knowles [9] have shown that, under appropriate conditions, results in the same spirit can be proved for measures taking their values in infinite-dimensional vector spaces. Another type of generalization was obtained by Dvoretsky, Wald and Wolfowitz [6,7]. What they do is to take m as above together with a natural number n≥ 1. They then consider the set Knof all vectorswhere (A1 A2,…, An) is an ordered ℱ-measurable partition of Ω (i.e. a partition whose terms A, all belong to ℱ). They prove in [6] that Kn is a compact convex subset of ℝnk and moreover that Kn is equal to the set of all vectors of the formwhere (ϕ1, ϕ2…, ϕn) is an ℱ-measurable partition of unity; i.e. it is an n-tuple of non-negative ϕr on Ω such thatLiapounov's theorem can be obtained as a corollary of this result by taking n= 2.


Author(s):  
Anthony To-Ming Lau ◽  
Yong Zhang

Abstract It has been a long-standing problem posed by the first author in a conference in Marseille in 1990 to characterize semitopological semigroups which have common fixed point property when acting on a nonempty weak* compact convex subset of a dual Banach space as weak* continuous and norm nonexpansive mappings. Our investigation in the paper centers around this problem. Our main results rely on the well-known Ky Fan’s inequality for convex functions.


1985 ◽  
Vol 28 (1) ◽  
pp. 60-66 ◽  
Author(s):  
George Tsintsifas

AbstractB. Grünbaum, J. N. Lillington and lately R. J. Gardner, S. Kwapien and D. P. Laurie have considered inequalities defined by three concurrent straight lines in the interior of a planar compact convex set. In this note we prove two elegant conjectures by R. J. Gardner, S. Kwapien and D. P. Laurie.


2003 ◽  
Vol 2003 (7) ◽  
pp. 407-433 ◽  
Author(s):  
Tadeusz Dobrowolski

The Schauder conjecture that every compact convex subset of a metric linear space has the fixed-point property was recently established by Cauty (2001). This paper elaborates on Cauty's proof in order to make it more detailed, and therefore more accessible. Such a detailed analysis allows us to show that the convex compacta in metric linear spaces possess the simplicial approximation property introduced by Kalton, Peck, and Roberts. The latter demonstrates that the original Schauder approach to solve the conjecture is in some sense “correctable.”


Sign in / Sign up

Export Citation Format

Share Document