Further results on the relative entropy

1987 ◽  
Vol 101 (2) ◽  
pp. 363-373 ◽  
Author(s):  
Matthew J. Donald

Given any subset ℬ, containing the identity (1), of ℬ (ℋ) (the bounded operators on some Hilbert space ℋ), and given two states σ and ρ on ℬ(ℋ), a definition was given in [3] of entℬ (σℬ|ρ|ℬ) - ‘the entropy of σ relative to ρ given the information in ℬ’. It was shown that, for ℬ an injective von Neumann algebra, the resulting relative entropy agreed with those of Umegaki, Araki, Pusz and Woronowicz, and Uhlmann. The purpose of this paper is to explore this definition further. After some technical preliminaries in Section 2, in Section 3 a new characterization of entℬ(ℋ) (σ|ρ) for σ and ρ normal states will be given. In Section 4 it will be shown that under fairly general circumstances the relative entropy on algebras can be used for statistical inference. This is important for applications of the relative entropy. I shall given the briefest sketches of how I see these applications being made in the measurement problem in quantum theory and in a ‘many worlds’ interpretation. The vigilant reader will notice that the scheme proposed in Section 4 for modelling measurements subject to given compatibility requirements differs slightly from that proposed in the introduction to [3]. The reason for this is outlined in Section 5, where an explicit computation is made of the relative entropy for the simplest non-trivial case in which ℬ is not an algebra; when ℬ = {1, P, Q} for P and Q projections subject to certain conditions.

2019 ◽  
Vol 169 (3) ◽  
pp. 607-622
Author(s):  
JINGHAO HUANG ◽  
GALINA LEVITINA ◽  
FEDOR SUKOCHEV

AbstractLet ℳ be a semifinite von Neumann algebra with a faithful semifinite normal trace τ. Assume that E(0, ∞) is an M-embedded fully symmetric function space having order continuous norm and is not a superset of the set of all bounded vanishing functions on (0, ∞). In this paper, we prove that the corresponding operator space E(ℳ, τ) is also M-embedded. It extends earlier results by Werner [48, Proposition 4∙1] from the particular case of symmetric ideals of bounded operators on a separable Hilbert space to the case of symmetric spaces (consisting of possibly unbounded operators) on an arbitrary semifinite von Neumann algebra. Several applications are given, e.g., the derivation problem for noncommutative Lorentz spaces ℒp,1(ℳ, τ), 1 < p < ∞, has a positive answer.


Author(s):  
Jussi Behrndt ◽  
Seppo Hassi ◽  
Henk de Snoo ◽  
Rudi Wietsma

AbstractLet Hn be a monotone sequence of non-negative self-adjoint operators or relations in a Hilbert space. Then there exists a self-adjoint relation H∞ such that Hn converges to H∞ in the strong resolvent sense. This result and related limit results are explored in detail and new simple proofs are presented. The corresponding statements for monotone sequences of semi-bounded closed forms are established as immediate consequences. Applications and examples, illustrating the general results, include sequences of multiplication operators, Sturm–Liouville operators with increasing potentials, forms associated with Kreĭn–Feller differential operators, singular perturbations of non-negative self-adjoint operators and the characterization of the Friedrichs and Kreĭn–von Neumann extensions of a non-negative operator or relation.


Author(s):  
PAOLO GIBILISCO ◽  
TOMMASO ISOLA

Let [Formula: see text] be a statistical manifold of density operators, with respect to an n.s.f. trace τ on a semifinite von Neumann algebra M. If Sp is the unit sphere of the noncommutative space Lp(M, τ), using the noncommutative Amari embedding [Formula: see text], we define a noncommutative α-bundle-connection pair (ℱα, ∇α), by the pullback technique. In the commutative case we show that it coincides with the construction of nonparametric Amari–Čentsov α-connection made in Ref. 8 by Gibilisco and Pistone.


1975 ◽  
Vol 20 (2) ◽  
pp. 159-164
Author(s):  
W. E. Longstaff

For any collection of closed subspaces of a complex Hilbert space the set of bounded operators that leave invariant all the members of the collection is a weakly-closed algebra. The class of such algebras is precisely the class of reflexive algebras as defined for example in Radjavi and Rosenthal (1969) and contains the class of von Neumann algebras.In this paper we consider the problem of when such algebras are finitely generated as weakly-closed algebras. It is to be hoped that analysis of this problem may shed some light on the famous unsolved problem of whether every von Neumann algebra on a separable Hilbert space is finitely generated. The case where the underlying space is separable and the collection of subspaces is totally ordered is dealt with in Longstaff (1974). In the present paper the result of Longstaff (1974) is generalized to the case of a direct product of countably many totally ordered collections each on a separable space. Also a method of obtaining non-finitely generated reflexive algebras is given.


Author(s):  
B. V. RAJARAMA BHAT ◽  
K. SUMESH

Bures had defined a metric on the set of normal states on a von Neumann algebra using GNS representations of states. This notion has been extended to completely positive maps between C*-algebras by Kretschmann, Schlingemann and Werner. We present a Hilbert C*-module version of this theory. We show that we do get a metric when the completely positive maps under consideration map to a von Neumann algebra. Further, we include several examples and counter examples. We also prove a rigidity theorem, showing that representation modules of completely positive maps which are close to the identity map contain a copy of the original algebra.


2010 ◽  
Vol 21 (04) ◽  
pp. 537-550 ◽  
Author(s):  
RUI OKAYASU

For finite dimensional abelian subalgebras of a finite von Neumann algebra, we obtain the value of conditional relative entropy defined by Choda. We also consider the modified invariant defined by Pimsner and Popa.


2013 ◽  
Vol 20 (02) ◽  
pp. 1350009 ◽  
Author(s):  
Julián Agredo

In this paper we define a distance W between states in the non-commutative von Neumann algebra [Formula: see text] of bounded operators on a separable Hilbert space [Formula: see text], in order to measure deviations from equilibrium using a rate ep W(·). The restriction of W to the diagonal subalgebra of [Formula: see text] coincides with the Wasserstein distance used in optimal transport. Moreover, if ρ is a normal invariant state of a quantum Markov semigroup [Formula: see text], then ep W(ρ) = 0 if and only if a detailed balance condition holds.


2012 ◽  
Vol 62 (6) ◽  
Author(s):  
A. Sherstnev ◽  
O. Tikhonov

AbstractWe give a necessary and sufficient condition for a sesquilinear form to be integrable with respect to a faithful normal state on a von Neumann algebra.


Sign in / Sign up

Export Citation Format

Share Document