The three-dimensional inverse scattering problem for the Helmholtz equation

Author(s):  
B. D. Sleeman

In this paper we are concerned with solutions of the three-dimensional Helmholtz equation which are of class C2 (i.e. regular) in the exterior of a bounded domain D. In cylindrical polar coordinates (r, z, φ) such solutions satisfy the equationin which we have dimensionalized the radial coordinate r so that the wave number is normalized to unity. If we further assume that u satisfies the Sommerfeld radiation conditionthen u may be regarded as being generated by volume sources, surface sources, or point singularities, all of which are contained in D.

1977 ◽  
Vol 18 (2) ◽  
pp. 125-130 ◽  
Author(s):  
David Colton

A classical result in potential theory is the Schwarz reflection principle for solutions of Laplace's equation which vanish on a portion of a spherical boundary. The question naturally arises whether or not such a property is also true for solutions of the Helmholtz equation. This has been answered in the affirmative by Diaz and Ludford ([4]; see also [10]) in the limiting case of the plane. It is the purpose of this paper to show that a reflection principle is also valid for spheres of finite radius. As an application of this result we shall study the problem of the analytic continuation of solutions to the Helmholtz equation defined in the exterior of a bounded domain in three-dimensional Euclidean space ℝ3 We shall show that through the use of the reflection principle derived in this paper, this problem can be reduced to the problem of the analytic continuation of an analytic function of two complex variables, which in turn can be performed through a variety of known methods (cf. [7]).


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dinh-Liem Nguyen ◽  
Trung Truong

AbstractThis paper is concerned with the inverse scattering problem for the three-dimensional Maxwell equations in bi-anisotropic periodic structures. The inverse scattering problem aims to determine the shape of bi-anisotropic periodic scatterers from electromagnetic near-field data at a fixed frequency. The factorization method is studied as an analytical and numerical tool for solving the inverse problem. We provide a rigorous justification of the factorization method which results in the unique determination and a fast imaging algorithm for the periodic scatterer. Numerical examples for imaging three-dimensional periodic structures are presented to examine the efficiency of the method.


1994 ◽  
Vol 347 ◽  
Author(s):  
J.Ch. Bolomey ◽  
N. Joachimowicz

ABSTRACTUntil now, the measurement techniques used for the dielectric characterization of materials require severe limitations in terms of sample shape, size and homogeneity. This paper considers the dielectric permittivity measurement as a non-linear inverse scattering problem. Such an approach allows to identify the quantities to be measured and suggests possible experimental arrangements. The problem is shown to be significantly simplified if the shape of the material is known and if some a priori knowledge of the averaged value of the permittivity in the material under test is available. Two test cases have been selected to illustrate the state of the art in solving such inverse problems. The first one consists of a two-dimensional configuration which is applicable to cylindrical objects, and the second one to a vector three-dimensional configuration applicable, for instance, to cubic samples. The main limitations of such an inverse scattering approach are discussed and expected improvements in the near future are analysed.


1989 ◽  
Vol 32 (1) ◽  
pp. 107-119 ◽  
Author(s):  
R. L. Ochs

Let D be a bounded, simply connected domain in the plane R2 that is starlike with respect to the origin and has C2, α boundary, ∂D, described by the equation in polar coordinateswhere C2, α denotes the space of twice Hölder continuously differentiable functions of index α. In this paper, it is shown that any solution of the Helmholtz equationin D can be approximated in the space by an entire Herglotz wave functionwith kernel g ∈ L2[0,2π] having support in an interval [0, η] with η chosen arbitrarily in 0 > η < 2π.


Sign in / Sign up

Export Citation Format

Share Document