scholarly journals Positive topological entropy of Reeb flows on spherizations

2011 ◽  
Vol 151 (1) ◽  
pp. 103-128 ◽  
Author(s):  
LEONARDO MACARINI ◽  
FELIX SCHLENK

AbstractLet M be a closed manifold whose based loop space Ω (M) is “complicated”. Examples are rationally hyperbolic manifolds and manifolds whose fundamental group has exponential growth. Consider a hypersurface Σ in T*M which is fiberwise starshaped with respect to the origin. Choose a function H : T*M → ℝ such that Σ is a regular energy surface of H, and let ϕt be the restriction to Σ of the Hamiltonian flow of H.Theorem 1. The topological entropy of ϕt is positive.This result has been known for fiberwise convex Σ by work of Dinaburg, Gromov, Paternain, and Paternain–Petean on geodesic flows. We use the geometric idea and the Floer homological technique from [19], but in addition apply the sandwiching method. Theorem 1 can be reformulated as follows.Theorem 1'. The topological entropy of any Reeb flow on the spherization SM of T*M is positive.For q ∈ M abbreviate Σq = Σ ∩ Tq*M. The following corollary extends results of Morse and Gromov on the number of geodesics between two points.Corollary 1. Given q ∈ M, for almost every q′ ∈ M the number of orbits of the flow ϕt from Σq to Σq′ grows exponentially in time.In the lowest dimension, Theorem 1 yields the existence of many closed, orbits.Corollary 2. Let M be a closed surface different from S2, ℝP2, the torus and the Klein bottle. Then ϕt carries a horseshoe. In particular, the number of geometrically distinct closed orbits grows exponentially in time.

Author(s):  
Lucas Dahinden

Topological entropy is not lower semi-continuous: small perturbation of the dynamical system can lead to a collapse of entropy. In this note we show that for some special classes of dynamical systems (geodesic flows, Reeb flows, positive contactomorphisms) topological entropy at least is stable in the sense that there exists a nontrivial continuous lower bound, given that a certain homological invariant grows exponentially.


2008 ◽  
Vol 17 (01) ◽  
pp. 47-53 ◽  
Author(s):  
PING ZHANG

It is shown that for the braid group Bn(M) on a closed surface M of nonnegative Euler characteristic, Out (Bn(M)) is isomorphic to a group extension of the group of central automorphisms of Bn(M) by the extended mapping class group of M, with an explicit and complete description of Aut (Bn(S2)), Aut (Bn(P2)), Out (Bn(S2)) and Out (Bn(P2)).


2019 ◽  
Vol 11 (01) ◽  
pp. 53-108 ◽  
Author(s):  
Marcelo R. R. Alves

In this paper we study the growth rate of a version of Legendrian contact homology, which we call strip Legendrian contact homology, in 3-dimensional contact manifolds and its relation to the topological entropy of Reeb flows. We show that: if for a pair of Legendrian knots in a contact 3-manifold [Formula: see text] the strip Legendrian contact homology is defined and has exponential homotopical growth with respect to the action, then every Reeb flow on [Formula: see text] has positive topological entropy. This has the following dynamical consequence: for all Reeb flows (even degenerate ones) on [Formula: see text] the number of hyperbolic periodic orbits grows exponentially with respect to the period. We show that for an infinite family of 3-manifolds, infinitely many different contact structures exist that possess a pair of Legendrian knots for which the strip Legendrian contact homology has exponential growth rate.


2015 ◽  
Vol 07 (03) ◽  
pp. 407-451 ◽  
Author(s):  
Urs Frauenfelder ◽  
Clémence Labrousse ◽  
Felix Schlenk

We give a uniform lower bound for the polynomial complexity of Reeb flows on the spherization (S*M, ξ) over a closed manifold. Our measure for the dynamical complexity of Reeb flows is slow volume growth, a polynomial version of topological entropy, and our lower bound is in terms of the polynomial growth of the homology of the based loop space of M. As an application, we extend the Bott–Samelson theorem from geodesic flows to Reeb flows: If (S*M, ξ) admits a periodic Reeb flow, or, more generally, if there exists a positive Legendrian loop of a fiber [Formula: see text], then M is a circle or the fundamental group of M is finite and the integral cohomology ring of the universal cover of M agrees with that of a compact rank one symmetric space.


1997 ◽  
Vol 17 (5) ◽  
pp. 1043-1059 ◽  
Author(s):  
KEITH BURNS ◽  
GABRIEL P. PATERNAIN

Let $M$ be a compact $C^{\infty}$ Riemannian manifold. Given $p$ and $q$ in $M$ and $T>0$, define $n_{T}(p,q)$ as the number of geodesic segments joining $p$ and $q$ with length $\leq T$. Mañé showed in [7] that \[ \lim_{T\rightarrow \infty}\frac{1}{T}\log \int_{M\times M}n_{T}(p,q)\,dp\,dq = h_{\rm top}, \] where $h_{\rm top}$ denotes the topological entropy of the geodesic flow of $M$.In this paper we exhibit an open set of metrics on the two-sphere for which \[ \limsup_{T\rightarrow\infty}\frac{1}{T}\log n_{T}(p,q)< h_{\rm top}, \] for a positive measure set of $(p,q)\in M\times M$. This answers in the negative questions raised by Mañé in [7].


2005 ◽  
Vol 92 (1) ◽  
pp. 203-223 ◽  
Author(s):  
SANGYOP LEE ◽  
SEUNGSANG OH ◽  
MASAKAZU TERAGAITO

In this paper we investigate the distances between Dehn fillings on a hyperbolic 3-manifold that yield 3-manifolds containing essential small surfaces including non-orientable surfaces. In particular, we study the situations where one filling creates an essential sphere or projective plane, and the other creates an essential sphere, projective plane, annulus, Möbius band, torus or Klein bottle, for all eleven pairs of such non-hyperbolic manifolds.


Sign in / Sign up

Export Citation Format

Share Document