scholarly journals C0-stability of topological entropy for contactomorphisms

Author(s):  
Lucas Dahinden

Topological entropy is not lower semi-continuous: small perturbation of the dynamical system can lead to a collapse of entropy. In this note we show that for some special classes of dynamical systems (geodesic flows, Reeb flows, positive contactomorphisms) topological entropy at least is stable in the sense that there exists a nontrivial continuous lower bound, given that a certain homological invariant grows exponentially.

2015 ◽  
Vol 07 (03) ◽  
pp. 407-451 ◽  
Author(s):  
Urs Frauenfelder ◽  
Clémence Labrousse ◽  
Felix Schlenk

We give a uniform lower bound for the polynomial complexity of Reeb flows on the spherization (S*M, ξ) over a closed manifold. Our measure for the dynamical complexity of Reeb flows is slow volume growth, a polynomial version of topological entropy, and our lower bound is in terms of the polynomial growth of the homology of the based loop space of M. As an application, we extend the Bott–Samelson theorem from geodesic flows to Reeb flows: If (S*M, ξ) admits a periodic Reeb flow, or, more generally, if there exists a positive Legendrian loop of a fiber [Formula: see text], then M is a circle or the fundamental group of M is finite and the integral cohomology ring of the universal cover of M agrees with that of a compact rank one symmetric space.


2015 ◽  
Vol 25 (12) ◽  
pp. 1550158 ◽  
Author(s):  
Zhiming Li

In this paper, we give several classical definitions of topological entropy (on a noncompact and noninvariant subset) for nonautonomous dynamical system. Furthermore, their relationships are established.


1993 ◽  
Vol 13 (4) ◽  
pp. 807-830 ◽  
Author(s):  
Homer S. White

AbstractThis work is based on the author's dissertation. We examine the algorithmic complexity (in the sense of Kolmogorov and Chaitin) of the orbits of points in dynamical systems. Extending a theorem of A. A. Brudno, we note that for any ergodic invariant probability measure on a compact dynamical system, almost every trajectory has a limiting complexity equal to the entropy of the system. We use these results to show that for minimal dynamical systems, and for systems with the tracking property (a weaker version of specification), the set of points whose trajectories have upper complexity equal to the topological entropy is residual. We give an example of a topologically transitive system with positive entropy for which an uncountable open set of points has upper complexity equal to zero. We use techniques from universal data compression to prove a recurrence theorem: if a compact dynamical system has a unique measure of maximal entropy, then any point whose lower complexity is equal to the topological entropy is generic for that unique measure. Finally, we discuss algorithmic versions of the theorem of Kamae on preservation of the class of normal sequences under selection by sequences of zero Kamae-entropy.


10.37236/2213 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Stephen M. Shea

A labeling of a graph is a function from the vertex set of the graph to some finite set.  Certain dynamical systems (such as topological Markov shifts) can be defined by directed graphs.  In these instances, a labeling of the graph defines a continuous, shift-commuting factor of the dynamical system.  We find sufficient conditions on the labeling to imply classification results for the factor dynamical system.  We define the topological entropy of a (directed or undirected) graph and its labelings in a way that is analogous to the definition of topological entropy for a shift space in symbolic dynamics.  We show, for example, if $G$ is a perfect graph, all proper $\chi(G)$-colorings of $G$ have the same entropy, where $\chi(G)$ is the chromatic number of $G$.


2011 ◽  
Vol 151 (1) ◽  
pp. 103-128 ◽  
Author(s):  
LEONARDO MACARINI ◽  
FELIX SCHLENK

AbstractLet M be a closed manifold whose based loop space Ω (M) is “complicated”. Examples are rationally hyperbolic manifolds and manifolds whose fundamental group has exponential growth. Consider a hypersurface Σ in T*M which is fiberwise starshaped with respect to the origin. Choose a function H : T*M → ℝ such that Σ is a regular energy surface of H, and let ϕt be the restriction to Σ of the Hamiltonian flow of H.Theorem 1. The topological entropy of ϕt is positive.This result has been known for fiberwise convex Σ by work of Dinaburg, Gromov, Paternain, and Paternain–Petean on geodesic flows. We use the geometric idea and the Floer homological technique from [19], but in addition apply the sandwiching method. Theorem 1 can be reformulated as follows.Theorem 1'. The topological entropy of any Reeb flow on the spherization SM of T*M is positive.For q ∈ M abbreviate Σq = Σ ∩ Tq*M. The following corollary extends results of Morse and Gromov on the number of geodesics between two points.Corollary 1. Given q ∈ M, for almost every q′ ∈ M the number of orbits of the flow ϕt from Σq to Σq′ grows exponentially in time.In the lowest dimension, Theorem 1 yields the existence of many closed, orbits.Corollary 2. Let M be a closed surface different from S2, ℝP2, the torus and the Klein bottle. Then ϕt carries a horseshoe. In particular, the number of geometrically distinct closed orbits grows exponentially in time.


2020 ◽  
pp. 2150021
Author(s):  
Xinsheng Wang ◽  
Weisheng Wu ◽  
Yujun Zhu

Let [Formula: see text] be a [Formula: see text] random partially hyperbolic dynamical system. For the unstable foliation, the corresponding unstable metric entropy, unstable topological entropy and unstable pressure via the dynamics of [Formula: see text] on the unstable foliation are introduced and investigated. A version of Shannon–McMillan–Breiman Theorem for unstable metric entropy is given, and a variational principle for unstable pressure (and hence for unstable entropy) is obtained. Moreover, as an application of the variational principle, equilibrium states for the unstable pressure including Gibbs [Formula: see text]-states are investigated.


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 379
Author(s):  
Miguel Abadi ◽  
Vitor Amorim ◽  
Sandro Gallo

From a physical/dynamical system perspective, the potential well represents the proportional mass of points that escape the neighbourhood of a given point. In the last 20 years, several works have shown the importance of this quantity to obtain precise approximations for several recurrence time distributions in mixing stochastic processes and dynamical systems. Besides providing a review of the different scaling factors used in the literature in recurrence times, the present work contributes two new results: (1) For ϕ-mixing and ψ-mixing processes, we give a new exponential approximation for hitting and return times using the potential well as the scaling parameter. The error terms are explicit and sharp. (2) We analyse the uniform positivity of the potential well. Our results apply to processes on countable alphabets and do not assume a complete grammar.


1989 ◽  
Vol 03 (15) ◽  
pp. 1185-1188 ◽  
Author(s):  
J. SEIMENIS

We develop a method to find solutions of the equations of motion in Hamiltonian Dynamical Systems. We apply this method to the system [Formula: see text] We study the case a → 0 and we find that in this case the system has an infinite number of period dubling bifurcations.


Sign in / Sign up

Export Citation Format

Share Document