scholarly journals Hölder differentiability of self-conformal devil's staircases

2014 ◽  
Vol 156 (2) ◽  
pp. 295-311 ◽  
Author(s):  
SASCHA TROSCHEIT

AbstractIn this paper we consider the probability distribution function of a Gibbs measure supported on a self-conformal set given by an iterated function system (devil's staircase) applied to a compact subset of ${\mathbb R}$. We use thermodynamic multifractal formalism to calculate the Hausdorff dimension of the sets Sα0, Sα∞ and Sα, the set of points at which this function has, respectively, Hölder derivative 0, ∞ or no derivative in the general sense. This extends recent work by Darst, Dekking, Falconer, Kesseböhmer and Stratmann, and Yao, Zhang and Li by considering arbitrary such Gibbs measures given by a potential function independent of the geometric potential.

Fractals ◽  
2003 ◽  
Vol 11 (01) ◽  
pp. 101-107 ◽  
Author(s):  
F. M. DEKKING ◽  
WENXIA LI

Let the self-similar set C in R be defined by [Formula: see text] with a disjoint union, where the hj's are similitude mappings with ratios 0 < aj < 1. Let μ on C be the self-similar probability measure corresponding to the probability vector [Formula: see text], where ξ = dim HC is the Hausdorff dimension of C. Let S be the set of points at which the probability distribution function F of μ has no derivative, finite or infinite. We prove that dim H S = ( dim HC)2 and dim P S = dim B S = dim HC.


2009 ◽  
Vol 147 (2) ◽  
pp. 489-503 ◽  
Author(s):  
MARC KESSEBÖHMER ◽  
BERND O. STRATMANN

AbstractIn this paper we give non-trivial applications of the thermodynamic formalism to the theory of distribution functions of Gibbs measures (devil's staircases) supported on limit sets of finitely generated conformal iterated function systems in ℝ. For a large class of these Gibbs states we determine the Hausdorff dimension of the set of points at which the distribution function of these measures is not α-Hölder-differentiable. The obtained results give significant extensions of recent work by Darst, Dekking, Falconer, Li, Morris and Xiao. In particular, our results clearly show that the results of these authors have their natural home within the thermodynamic formalism.


Radiocarbon ◽  
2016 ◽  
Vol 59 (5) ◽  
pp. 1623-1627 ◽  
Author(s):  
Ron W Reimer ◽  
Paula J Reimer

AbstractA regional offset (ΔR) from the marine radiocarbon calibration curve is widely used in calibration software (e.g. CALIB, OxCal) but often is not calculated correctly. While relatively straightforward for known-age samples, such as mollusks from museum collections or annually banded corals, it is more difficult to calculate ΔR and the uncertainty in ΔR for 14C dates on paired marine and terrestrial samples. Previous researchers have often utilized classical intercept methods that do not account for the full calibrated probability distribution function (pdf). Recently, Soulet (2015) provided R code for calculating reservoir ages using the pdfs, but did not address ΔR and the uncertainty in ΔR. We have developed an online application for performing these calculations for known-age, paired marine and terrestrial 14C dates and U-Th dated corals. This article briefly discusses methods that have been used for calculating ΔR and the uncertainty and describes the online program deltar, which is available free of charge.


2012 ◽  
Vol 706 ◽  
pp. 118-149 ◽  
Author(s):  
Dennis P. M. van Gils ◽  
Sander G. Huisman ◽  
Siegfried Grossmann ◽  
Chao Sun ◽  
Detlef Lohse

AbstractStrongly turbulent Taylor–Couette flow with independently rotating inner and outer cylinders with a radius ratio of $\eta = 0. 716$ is experimentally studied. From global torque measurements, we analyse the dimensionless angular velocity flux ${\mathit{Nu}}_{\omega } (\mathit{Ta}, a)$ as a function of the Taylor number $\mathit{Ta}$ and the angular velocity ratio $a= \ensuremath{-} {\omega }_{o} / {\omega }_{i} $ in the large-Taylor-number regime $1{0}^{11} \lesssim \mathit{Ta}\lesssim 1{0}^{13} $ and well off the inviscid stability borders (Rayleigh lines) $a= \ensuremath{-} {\eta }^{2} $ for co-rotation and $a= \infty $ for counter-rotation. We analyse the data with the common power-law ansatz for the dimensionless angular velocity transport flux ${\mathit{Nu}}_{\omega } (\mathit{Ta}, a)= f(a)\hspace{0.167em} {\mathit{Ta}}^{\gamma } $, with an amplitude $f(a)$ and an exponent $\gamma $. The data are consistent with one effective exponent $\gamma = 0. 39\pm 0. 03$ for all $a$, but we discuss a possible $a$ dependence in the co- and weakly counter-rotating regimes. The amplitude of the angular velocity flux $f(a)\equiv {\mathit{Nu}}_{\omega } (\mathit{Ta}, a)/ {\mathit{Ta}}^{0. 39} $ is measured to be maximal at slight counter-rotation, namely at an angular velocity ratio of ${a}_{\mathit{opt}} = 0. 33\pm 0. 04$, i.e. along the line ${\omega }_{o} = \ensuremath{-} 0. 33{\omega }_{i} $. This value is theoretically interpreted as the result of a competition between the destabilizing inner cylinder rotation and the stabilizing but shear-enhancing outer cylinder counter-rotation. With the help of laser Doppler anemometry, we provide angular velocity profiles and in particular identify the radial position ${r}_{n} $ of the neutral line, defined by $ \mathop{ \langle \omega ({r}_{n} )\rangle } \nolimits _{t} = 0$ for fixed height $z$. For these large $\mathit{Ta}$ values, the ratio $a\approx 0. 40$, which is close to ${a}_{\mathit{opt}} = 0. 33$, is distinguished by a zero angular velocity gradient $\partial \omega / \partial r= 0$ in the bulk. While for moderate counter-rotation $\ensuremath{-} 0. 40{\omega }_{i} \lesssim {\omega }_{o} \lt 0$, the neutral line still remains close to the outer cylinder and the probability distribution function of the bulk angular velocity is observed to be monomodal. For stronger counter-rotation the neutral line is pushed inwards towards the inner cylinder; in this regime the probability distribution function of the bulk angular velocity becomes bimodal, reflecting intermittent bursts of turbulent structures beyond the neutral line into the outer flow domain, which otherwise is stabilized by the counter-rotating outer cylinder. Finally, a hypothesis is offered allowing a unifying view and consistent interpretation for all these various results.


2015 ◽  
Author(s):  
Suhaib A. ◽  
Khairunizam Wan ◽  
Azri A. Aziz ◽  
D. Hazry ◽  
Zuradzman M. Razlan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document