scholarly journals Separation dimension and degree

Author(s):  
ALEX SCOTT ◽  
DAVID R. WOOD

Abstract The separation dimension of a graph G is the minimum positive integer d for which there is an embedding of G into ℝ d , such that every pair of disjoint edges are separated by some axis-parallel hyperplane. We prove a conjecture of Alon et al. [SIAM J. Discrete Math. 2015] by showing that every graph with maximum degree Δ has separation dimension less than 20Δ, which is best possible up to a constant factor. We also prove that graphs with separation dimension 3 have bounded average degree and bounded chromatic number, partially resolving an open problem by Alon et al. [J. Graph Theory 2018].

2002 ◽  
Vol 11 (1) ◽  
pp. 103-111 ◽  
Author(s):  
VAN H. VU

Suppose that G is a graph with maximum degree d(G) such that, for every vertex v in G, the neighbourhood of v contains at most d(G)2/f (f > 1) edges. We show that the list chromatic number of G is at most Kd(G)/log f, for some positive constant K. This result is sharp up to the multiplicative constant K and strengthens previous results by Kim [9], Johansson [7], Alon, Krivelevich and Sudakov [3], and the present author [18]. This also motivates several interesting questions.As an application, we derive several upper bounds for the strong (list) chromatic index of a graph, under various assumptions. These bounds extend earlier results by Faudree, Gyárfás, Schelp and Tuza [6] and Mahdian [13] and determine, up to a constant factor, the strong (list) chromatic index of a random graph. Another application is an extension of a result of Kostochka and Steibitz [10] concerning the structure of list critical graphs.


d'CARTESIAN ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 86
Author(s):  
Yevie Ingamita ◽  
Nelson Nainggolan ◽  
Benny Pinontoan

Graph Theory is one of the mathematical sciences whose application is very wide in human life. One of theory graph application is Map Coloring. This research discusses how to color the map of Minahasa Regency by using the minimum color that possible. The algorithm used to determine the minimum color in coloring the region of Minahasa Regency that is Sequential Color Algorithm. The Sequential Color Algorithm is an algorithm used in coloring a graph with k-color, where k is a positive integer. Based on the results of this research was found that the Sequential Color Algorithm can be used to color the map of Minahasa Regency with the minimum number of colors or chromatic number χ(G) obtained in the coloring of 25 sub-districts on the map of Minahasa Regency are 3 colors (χ(G) = 3).


2017 ◽  
Vol 27 (2) ◽  
pp. 141-161
Author(s):  
PETER ALLEN ◽  
JULIA BÖTTCHER ◽  
YOSHIHARU KOHAYAKAWA ◽  
BARNABY ROBERTS

Recently there has been much interest in studying random graph analogues of well-known classical results in extremal graph theory. Here we follow this trend and investigate the structure of triangle-free subgraphs of G(n, p) with high minimum degree. We prove that asymptotically almost surely each triangle-free spanning subgraph of G(n, p) with minimum degree at least (2/5 + o(1))pn is (p−1n)-close to bipartite, and each spanning triangle-free subgraph of G(n, p) with minimum degree at least (1/3 + ϵ)pn is O(p−1n)-close to r-partite for some r = r(ϵ). These are random graph analogues of a result by Andrásfai, Erdős and Sós (Discrete Math.8 (1974), 205–218), and a result by Thomassen (Combinatorica22 (2002), 591–596). We also show that our results are best possible up to a constant factor.


1996 ◽  
Vol 5 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Keith Edwards

A harmonious colouring of a simple graph G is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colours in such a colouring. Let d be a fixed positive integer. We show that there is a natural number N(d) such that if T is any tree with m ≥ N(d) edges and maximum degree at most d, then the harmonious chromatic number h(T) is k or k + 1, where k is the least positive integer such that . We also give a polynomial time algorithm for determining the harmonious chromatic number of a tree with maximum degree at most d.


Author(s):  
Mohammed Authman ◽  
Husam Q. Mohammad ◽  
Nazar H. Shuker

The idempotent divisor graph of a commutative ring R is a graph with vertices set in R* = R-{0}, and any distinct vertices x and y are adjacent if and only if x.y = e, for some non-unit idempotent element e2 = e ϵ R, and is denoted by Л(R). The purpose of this work is using some properties of ring theory and graph theory to find the clique number, the chromatic number and the region chromatic number for every planar idempotent divisor graphs of commutative rings. Also we show the clique number is equal to the chromatic number for any planar idempotent divisor graph. Among other results we prove that: Let Fq, Fpa are fieldes of orders q and pa respectively, where q=2 or 3, p is a prime number and a Is a positive integer. If a ring R @ Fq x Fpa . Then (Л(R))= (Л(R)) = *( Л(R)) = 3.


2019 ◽  
Vol 28 (5) ◽  
pp. 791-810 ◽  
Author(s):  
Kevin Hendrey ◽  
David R. Wood

AbstractAn (improper) graph colouring hasdefect dif each monochromatic subgraph has maximum degree at mostd, and hasclustering cif each monochromatic component has at mostcvertices. This paper studies defective and clustered list-colourings for graphs with given maximum average degree. We prove that every graph with maximum average degree less than (2d+2)/(d+2)kisk-choosable with defectd. This improves upon a similar result by Havet and Sereni (J. Graph Theory, 2006). For clustered choosability of graphs with maximum average degreem, no (1-ɛ)mbound on the number of colours was previously known. The above result withd=1 solves this problem. It implies that every graph with maximum average degreemis$\lfloor{\frac{3}{4}m+1}\rfloor$-choosable with clustering 2. This extends a result of Kopreski and Yu (Discrete Math., 2017) to the setting of choosability. We then prove two results about clustered choosability that explore the trade-off between the number of colours and the clustering. In particular, we prove that every graph with maximum average degreemis$\lfloor{\frac{7}{10}m+1}\rfloor$-choosable with clustering 9, and is$\lfloor{\frac{2}{3}m+1}\rfloor$-choosable with clusteringO(m). As an example, the later result implies that every biplanar graph is 8-choosable with bounded clustering. This is the best known result for the clustered version of the earth–moon problem. The results extend to the setting where we only consider the maximum average degree of subgraphs with at least some number of vertices. Several applications are presented.


2014 ◽  
Vol 12 (12) ◽  
Author(s):  
Teresa Haynes ◽  
Michael Henning ◽  
Lucas Merwe ◽  
Anders Yeo

AbstractA graph is diameter-2-critical if its diameter is two and the deletion of any edge increases the diameter. Let G be a diameter-2-critical graph of order n. Murty and Simon conjectured that the number of edges in G is at most ⌊n 2/4⌋ and that the extremal graphs are the complete bipartite graphs K ⌊n/2⌋,⌊n/2⌉. Fan [Discrete Math. 67 (1987), 235–240] proved the conjecture for n ≤ 24 and for n = 26, while Füredi [J. Graph Theory 16 (1992), 81–98] proved the conjecture for n > n 0 where n 0 is a tower of 2’s of height about 1014. The conjecture has yet to be proven for other values of n. Let Δ denote the maximum degree of G. We prove the following maximum degree theorems for diameter-2-critical graphs. If Δ ≥ 0.7 n, then the Murty-Simon Conjecture is true. If n ≥ 2000 and Δ ≥ 0.6789 n, then the Murty-Simon Conjecture is true.


Author(s):  
István Tomon ◽  
Dmitriy Zakharov

Abstract In this short note, we prove the following analog of the Kővári–Sós–Turán theorem for intersection graphs of boxes. If G is the intersection graph of n axis-parallel boxes in $${{\mathbb{R}}^d}$$ such that G contains no copy of K t,t , then G has at most ctn( log n)2d+3 edges, where c = c(d)>0 only depends on d. Our proof is based on exploring connections between boxicity, separation dimension and poset dimension. Using this approach, we also show that a construction of Basit, Chernikov, Starchenko, Tao and Tran of K2,2-free incidence graphs of points and rectangles in the plane can be used to disprove a conjecture of Alon, Basavaraju, Chandran, Mathew and Rajendraprasad. We show that there exist graphs of separation dimension 4 having superlinear number of edges.


1987 ◽  
Vol 109 (4) ◽  
pp. 487-490 ◽  
Author(s):  
Hong-Sen Yan ◽  
Frank Harary

One of the major steps in the development of a systematic design methodology for the creative design of vehicle mechanisms is to obtain all possible link assortments, and then to generate the catalogs of kinematic chains. If the generalized mathematical expressions for the maximum value M of the maximum number of joints incident to a link of kinematic chains with N links and J joints can be derived, the process of solving link assortments can be more systematic. Using elementary concepts of graph theory, we derived explicit relationships for M for two regions of the J-N plane.


Author(s):  
Shamaila Yousaf ◽  
Akhlaq Ahmad Bhatti

The total irregularity index of a graph [Formula: see text] is defined by Abdo et al. [H. Abdo, S. Brandt and D. Dimitrov, The total irregularity of a graph, Discrete Math. Theor. Comput. Sci. 16 (2014) 201–206] as [Formula: see text], where [Formula: see text] denotes the degree of a vertex [Formula: see text]. In 2014, You et al. [L. H. You, J. S. Yang and Z. F. You, The maximal total irregularity of unicyclic graphs, Ars Comb. 114 (2014) 153–160.] characterized the graph having maximum [Formula: see text] value among all elements of the class [Formula: see text] (Unicyclic graphs) and Zhou et al. [L. H. You, J. S. Yang, Y. X. Zhu and Z. F. You, The maximal total irregularity of bicyclic graphs, J. Appl. Math. 2014 (2014) 785084, http://dx.doi.org/10.1155/2014/785084 ] characterized the graph having maximum [Formula: see text] value among all elements of the class [Formula: see text] (Bicyclic graphs). In this paper, we characterize the aforementioned graphs with an alternative but comparatively simple approach. Also, we characterized the graphs having maximum [Formula: see text] value among the classes [Formula: see text] (Tricyclic graphs), [Formula: see text] (Tetracyclic graphs), [Formula: see text] (Pentacyclic graphs) and [Formula: see text] (Hexacyclic graphs).


Sign in / Sign up

Export Citation Format

Share Document