A maximum degree theorem for diameter-2-critical graphs

2014 ◽  
Vol 12 (12) ◽  
Author(s):  
Teresa Haynes ◽  
Michael Henning ◽  
Lucas Merwe ◽  
Anders Yeo

AbstractA graph is diameter-2-critical if its diameter is two and the deletion of any edge increases the diameter. Let G be a diameter-2-critical graph of order n. Murty and Simon conjectured that the number of edges in G is at most ⌊n 2/4⌋ and that the extremal graphs are the complete bipartite graphs K ⌊n/2⌋,⌊n/2⌉. Fan [Discrete Math. 67 (1987), 235–240] proved the conjecture for n ≤ 24 and for n = 26, while Füredi [J. Graph Theory 16 (1992), 81–98] proved the conjecture for n > n 0 where n 0 is a tower of 2’s of height about 1014. The conjecture has yet to be proven for other values of n. Let Δ denote the maximum degree of G. We prove the following maximum degree theorems for diameter-2-critical graphs. If Δ ≥ 0.7 n, then the Murty-Simon Conjecture is true. If n ≥ 2000 and Δ ≥ 0.6789 n, then the Murty-Simon Conjecture is true.

2021 ◽  
Vol vol. 23, no. 3 (Graph Theory) ◽  
Author(s):  
Stijn Cambie

In this paper, we prove a collection of results on graphical indices. We determine the extremal graphs attaining the maximal generalized Wiener index (e.g. the hyper-Wiener index) among all graphs with given matching number or independence number. This generalizes some work of Dankelmann, as well as some work of Chung. We also show alternative proofs for two recents results on maximizing the Wiener index and external Wiener index by deriving it from earlier results. We end with proving two conjectures. We prove that the maximum for the difference of the Wiener index and the eccentricity is attained by the path if the order $n$ is at least $9$ and that the maximum weighted Szeged index of graphs of given order is attained by the balanced complete bipartite graphs.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1778
Author(s):  
Fangyun Tao ◽  
Ting Jin ◽  
Yiyou Tu

An equitable partition of a graph G is a partition of the vertex set of G such that the sizes of any two parts differ by at most one. The strong equitable vertexk-arboricity of G, denoted by vak≡(G), is the smallest integer t such that G can be equitably partitioned into t′ induced forests for every t′≥t, where the maximum degree of each induced forest is at most k. In this paper, we provide a general upper bound for va2≡(Kn,n). Exact values are obtained in some special cases.


2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Shuchao Li ◽  
Huihui Zhang ◽  
Xiaoyan Zhang

Graph Theory International audience A maximal independent set is an independent set that is not a proper subset of any other independent set. Liu [J.Q. Liu, Maximal independent sets of bipartite graphs, J. Graph Theory, 17 (4) (1993) 495-507] determined the largest number of maximal independent sets among all n-vertex bipartite graphs. The corresponding extremal graphs are forests. It is natural and interesting for us to consider this problem on bipartite graphs with cycles. Let \mathscrBₙ (resp. \mathscrBₙ') be the set of all n-vertex bipartite graphs with at least one cycle for even (resp. odd) n. In this paper, the largest number of maximal independent sets of graphs in \mathscrBₙ (resp. \mathscrBₙ') is considered. Among \mathscrBₙ the disconnected graphs with the first-, second-, \ldots, \fracn-22-th largest number of maximal independent sets are characterized, while the connected graphs in \mathscrBₙ having the largest, the second largest number of maximal independent sets are determined. Among \mathscrBₙ' graphs have the largest number of maximal independent sets are identified.


2019 ◽  
Vol 28 (5) ◽  
pp. 791-810 ◽  
Author(s):  
Kevin Hendrey ◽  
David R. Wood

AbstractAn (improper) graph colouring hasdefect dif each monochromatic subgraph has maximum degree at mostd, and hasclustering cif each monochromatic component has at mostcvertices. This paper studies defective and clustered list-colourings for graphs with given maximum average degree. We prove that every graph with maximum average degree less than (2d+2)/(d+2)kisk-choosable with defectd. This improves upon a similar result by Havet and Sereni (J. Graph Theory, 2006). For clustered choosability of graphs with maximum average degreem, no (1-ɛ)mbound on the number of colours was previously known. The above result withd=1 solves this problem. It implies that every graph with maximum average degreemis$\lfloor{\frac{3}{4}m+1}\rfloor$-choosable with clustering 2. This extends a result of Kopreski and Yu (Discrete Math., 2017) to the setting of choosability. We then prove two results about clustered choosability that explore the trade-off between the number of colours and the clustering. In particular, we prove that every graph with maximum average degreemis$\lfloor{\frac{7}{10}m+1}\rfloor$-choosable with clustering 9, and is$\lfloor{\frac{2}{3}m+1}\rfloor$-choosable with clusteringO(m). As an example, the later result implies that every biplanar graph is 8-choosable with bounded clustering. This is the best known result for the clustered version of the earth–moon problem. The results extend to the setting where we only consider the maximum average degree of subgraphs with at least some number of vertices. Several applications are presented.


Author(s):  
ALEX SCOTT ◽  
DAVID R. WOOD

Abstract The separation dimension of a graph G is the minimum positive integer d for which there is an embedding of G into ℝ d , such that every pair of disjoint edges are separated by some axis-parallel hyperplane. We prove a conjecture of Alon et al. [SIAM J. Discrete Math. 2015] by showing that every graph with maximum degree Δ has separation dimension less than 20Δ, which is best possible up to a constant factor. We also prove that graphs with separation dimension 3 have bounded average degree and bounded chromatic number, partially resolving an open problem by Alon et al. [J. Graph Theory 2018].


1972 ◽  
Vol 24 (5) ◽  
pp. 805-807 ◽  
Author(s):  
Hudson V. Kronk ◽  
John Mitchem

It is easy to verify that any connected graph G with maximum degree s has chromatic number χ(G) ≦ 1 + s. In [1], R. L. Brooks proved that χ(G) ≦ s, unless s = 2 and G is an odd cycle or s > 2 and G is the complete graph Ks+1. This was the first significant theorem connecting the structure of a graph with its chromatic number. For s ≦ 4, Brooks' theorem says that every connected s-chromatic graph other than Ks contains a vertex of degree > s — 1. An equivalent formulation can be given in terms of s-critical graphs. A graph G is said to be s-critical if χ(G) = s, but every proper subgraph has chromatic number less than s. Each scritical graph has minimum degree ≦ s — 1. We can now restate Brooks' theorem: if an s-critical graph, s ≦ 4, is not Ks and has p vertices and q edges, then 2q ≦ (s — l)p + 1. Dirac [2] significantly generalized the theorem of Brooks by showing that 2q ≦ (s — 1)£ + s — 3 and that this result is best possible.


2021 ◽  
pp. 2142014
Author(s):  
Xiaoxue Gao ◽  
Shasha Li ◽  
Yan Zhao

For a graph [Formula: see text] and a set [Formula: see text] of size at least [Formula: see text], a path in [Formula: see text] is said to be an [Formula: see text]-path if it connects all vertices of [Formula: see text]. Two [Formula: see text]-paths [Formula: see text] and [Formula: see text] are said to be internally disjoint if [Formula: see text] and [Formula: see text]. Let [Formula: see text] denote the maximum number of internally disjoint [Formula: see text]-paths in [Formula: see text]. The [Formula: see text]-path-connectivity [Formula: see text] of [Formula: see text] is then defined as the minimum [Formula: see text], where [Formula: see text] ranges over all [Formula: see text]-subsets of [Formula: see text]. In [M. Hager, Path-connectivity in graphs, Discrete Math. 59 (1986) 53–59], the [Formula: see text]-path-connectivity of the complete bipartite graph [Formula: see text] was calculated, where [Formula: see text]. But, from his proof, only the case that [Formula: see text] was considered. In this paper, we calculate the situation that [Formula: see text] and complete the result.


10.37236/8857 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Zi-Xia Song ◽  
Jingmei Zhang

Given an integer $r\geqslant 1$ and graphs $G, H_1, \ldots, H_r$, we write $G \rightarrow ({H}_1, \ldots, {H}_r)$ if every $r$-coloring of the edges of $G$ contains a monochromatic copy of $H_i$ in color $i$ for some $i\in\{1, \ldots, r\}$. A non-complete graph $G$ is $(H_1, \ldots, H_r)$-co-critical if $G \nrightarrow ({H}_1, \ldots, {H}_r)$, but $G+e\rightarrow ({H}_1, \ldots, {H}_r)$ for every edge $e$ in $\overline{G}$. In this paper, motivated by Hanson and Toft's conjecture [Edge-colored saturated graphs, J Graph Theory 11(1987), 191–196], we study the minimum number of edges over all $(K_t, \mathcal{T}_k)$-co-critical graphs on $n$ vertices, where $\mathcal{T}_k$ denotes the family of all trees on $k$ vertices. Following Day [Saturated graphs of prescribed minimum degree, Combin. Probab. Comput. 26 (2017), 201–207], we apply graph bootstrap percolation on a not necessarily $K_t$-saturated graph to prove that for all $t\geqslant4 $ and $k\geqslant\max\{6, t\}$, there exists a constant $c(t, k)$ such that, for all $n \ge (t-1)(k-1)+1$, if $G$ is a $(K_t, \mathcal{T}_k)$-co-critical graph on $n$ vertices, then $$ e(G)\geqslant \left(\frac{4t-9}{2}+\frac{1}{2}\left\lceil \frac{k}{2} \right\rceil\right)n-c(t, k).$$ Furthermore, this linear bound is asymptotically best possible when $t\in\{4,5\}$ and $k\geqslant6$. The method we develop in this paper may shed some light on attacking Hanson and Toft's conjecture.


1987 ◽  
Vol 109 (4) ◽  
pp. 487-490 ◽  
Author(s):  
Hong-Sen Yan ◽  
Frank Harary

One of the major steps in the development of a systematic design methodology for the creative design of vehicle mechanisms is to obtain all possible link assortments, and then to generate the catalogs of kinematic chains. If the generalized mathematical expressions for the maximum value M of the maximum number of joints incident to a link of kinematic chains with N links and J joints can be derived, the process of solving link assortments can be more systematic. Using elementary concepts of graph theory, we derived explicit relationships for M for two regions of the J-N plane.


Sign in / Sign up

Export Citation Format

Share Document