A note on expansions for the two-dimensional, compressible, laminar boundary layer equations near a point of zero skin friction

Author(s):  
G. Wilks

SynopsisThe first non-arbitrary coefficient, α12, of the Buckmaster expansions is evaluated in the context of the extended Goldstein-Stewartson theory. Leading terms of the next order contributions to the skin friction and heat transfer coefficients are also obtained.

1968 ◽  
Vol 19 (3) ◽  
pp. 243-253 ◽  
Author(s):  
R. E. Luxton

SummaryIn this note a relation is established between the correlation parameters obtained by Cohen and Reshotko from similar solutions of the compressible laminar boundary layer, and the Pohlhausen-type pressure gradient parameter used in the approximate methods devised by Luxton and Young. A simple graphical procedure is presented to allow heat transfer coefficients to be obtained from known skin friction coefficients in the presence of a pressure gradient. In view of the restrictions of the similar solutions it cannot be claimeda priorithat the method gives accurate results. It does, however, reflect the strong dependence of the heat-transfer skin-friction relation on the pressure gradient and, by reference to calculated results published previously, it is suggested that the method may give adequate accuracy under quite severe conditions.


1955 ◽  
Vol 22 (3) ◽  
pp. 289-296
Author(s):  
Joseph Kaye ◽  
J. H. Keenan ◽  
G. A. Brown ◽  
R. H. Shoulberg

Abstract Reliable experimental data, obtained at relatively low cost, are presented in the form of heat-transfer coefficients for air moving at supersonic speeds in a round tube. These data are analyzed, interpreted, and compared with available data in the literature. The experimental local heat-transfer coefficients are for laminar, transitional, and turbulent boundary layers. The data for a laminar boundary layer, comprising 17 runs, are discussed here for Mach numbers at tube inlet of 2.8 and 3.0. The range of values of diameter Reynolds number covered is from 20,000 to 100,000 for these laminar-flow tests, while the length Reynolds number extends to about 4,000,000. The computed quantities are obtained on the basis of a simple one-dimensional flow model, but a companion paper will analyze the same data in greater detail on the basis of a two-dimensional flow model.


2020 ◽  
Vol 9 (2) ◽  
pp. 534
Author(s):  
Leli Deswita ◽  
Mohamad Mustaqim Junoh ◽  
Fadzilah Md Ali ◽  
Roslinda Nazar ◽  
Ioan Pop

In this paper, the problem of steady slip magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a nonlinear permeable shrinking surface in a heat generating fluid is studied. The transformed boundary layer equations are then solved numerically using the bvp4c function in MATLAB solver. Numerical results are obtained for various values of the magnetic parameter, the slip parameter and the suction parameter. The skin friction coefficients, the heat transfer coefficients, as well as the velocity and temperature profiles for various values of parameters are also obtained and discussed. 


1977 ◽  
Vol 80 (2) ◽  
pp. 279-292 ◽  
Author(s):  
T. Davies ◽  
G. Walker

A numerical solution of the two-dimensional compressible laminar boundary-layer equations up to the point of separation is presented. For a particular mainstream velocity distribution it is necessary to specify the surface temperature (or the heat flux across the surface), the suction velocity, the free-stream Mach number and the viscosity-temperature relationship for a solution to be generated. The effect upon the position of separation of a hot or cold wall and of varying the free-stream Mach number is given special emphasis. The variations of the skin friction, heat transfer and various boundary-layer thicknesses for compressible flow past a circular cylinder and for flow with a linearly retarded mainstream were found. The behaviour of the solutions close to separation is investigated. Known functions which model the skin friction and heat transfer are introduced and are used to match the numerical solutions with the Buckmaster (1970) expansions.


Sign in / Sign up

Export Citation Format

Share Document