Self-similar solutions of the laminar boundary layer equations for a compressible fluid including heat transfer

1958 ◽  
Vol 22 (2) ◽  
pp. 375-382
Author(s):  
A.Sh. Dorfman ◽  
N.I. Pol'skii ◽  
P.N. Romanenko
1999 ◽  
Vol 387 ◽  
pp. 227-254 ◽  
Author(s):  
VALOD NOSHADI ◽  
WILHELM SCHNEIDER

Plane and axisymmetric (radial), horizontal laminar jet flows, produced by natural convection on a horizontal finite plate acting as a heat dipole, are considered at large distances from the plate. It is shown that physically acceptable self-similar solutions of the boundary-layer equations, which include buoyancy effects, exist in certain Prandtl-number regimes, i.e. 0.5<Pr[les ]1.470588 for plane, and Pr>1 for axisymmetric flow. In the plane flow case, the eigenvalues of the self-similar solutions are independent of the Prandtl number and can be determined from a momentum balance, whereas in the axisymmetric case the eigenvalues depend on the Prandtl number and are to be determined as part of the solution of the eigenvalue problem. For Prandtl numbers equal to, or smaller than, the lower limiting values of 0.5 and 1 for plane and axisymmetric flow, respectively, the far flow field is a non-buoyant jet, for which self-similar solutions of the boundary-layer equations are also provided. Furthermore it is shown that self-similar solutions of the full Navier–Stokes equations for axisymmetric flow, with the velocity varying as 1/r, exist for arbitrary values of the Prandtl number.Comparisons with finite-element solutions of the full Navier–Stokes equations show that the self-similar boundary-layer solutions are asymptotically approached as the plate Grashof number tends to infinity, whereas the self-similar solution to the full Navier–Stokes equations is applicable, for a given value of the Prandtl number, only to one particular, finite value of the Grashof number.In the Appendices second-order boundary-layer solutions are given, and uniformly valid composite expansions are constructed; asymptotic expansions for large values of the lateral coordinate are performed to study the decay of the self-similar boundary-layer flows; and the stability of the jets is investigated using transient numerical solutions of the Navier–Stokes equations.


1970 ◽  
Vol 92 (3) ◽  
pp. 385-392 ◽  
Author(s):  
W. R. Wolfram ◽  
W. F. Walker

The present study was performed in order to determine the effects of upstream mass injection on downstream heat transfer in a reacting laminar boundary layer. The study differs from numerous previous investigations in that no similarity assumptions have been made. The complete set of coupled reacting laminar boundary layer equations with discontinuous mass injection was solved for this problem using an integral-matrix technique. The effects of mass injection on heat transfer to both sharp and blunt-nosed isothermal flat plates were studied for a Mach 2 freestream. The amount of injection and the length of the injected region were varied for each body. Heat transfer rates were found to decrease markedly in the injected region. A sharp rise in heat transfer was found immediately downstream of the region of injection followed by an asymptotic approach to the heat transfer rates calculated for the case of no injection. An insulating effect was found to persist for a considerable distance downstream from the injection region. The distance required for this insulating effect to die out was found to depend on the length of the injection region as well as the rate of injection.


1967 ◽  
Vol 18 (2) ◽  
pp. 103-120 ◽  
Author(s):  
M. Zamir ◽  
A. D. Young

SummarySimilar solutions of the boundary layer equations for incompressible flow with external velocity u1 ∞ xm and suction velocity υw ∞ x(m-1)/2 are obtained for negative values of m, in the range −0-1 to −0-9, and a wide range of suction quantities.The results are used, in combination with, existing solutions for positive m, to provide a guide to the ranges of m and suction parameter [(υw/u1√x] for which a general form of the classical asymptotic solution can be regarded as a good approximation to the exact solution.It is shown that the values of both m and suction parameter are generally important in this comparison, but for values of the latter greater than about 8 the approximation is a very good one for all values of m considered. For m≃−0·14 the approximation is good (i.e. the error is less than about 1 per cent) down to values of the suction parameter as low as 1·0.


1968 ◽  
Vol 19 (3) ◽  
pp. 243-253 ◽  
Author(s):  
R. E. Luxton

SummaryIn this note a relation is established between the correlation parameters obtained by Cohen and Reshotko from similar solutions of the compressible laminar boundary layer, and the Pohlhausen-type pressure gradient parameter used in the approximate methods devised by Luxton and Young. A simple graphical procedure is presented to allow heat transfer coefficients to be obtained from known skin friction coefficients in the presence of a pressure gradient. In view of the restrictions of the similar solutions it cannot be claimeda priorithat the method gives accurate results. It does, however, reflect the strong dependence of the heat-transfer skin-friction relation on the pressure gradient and, by reference to calculated results published previously, it is suggested that the method may give adequate accuracy under quite severe conditions.


1965 ◽  
Vol 87 (3) ◽  
pp. 403-408 ◽  
Author(s):  
A. R. Bu¨yu¨ktu¨r ◽  
J. Kestin

The paper presents solutions to the boundary-layer equations for heat-transfer rates into an accelerated and decelerated boundary layer in the presence of a linearly varying free-stream velocity. The equations are solved for the case of constant coefficients with frictional heat neglected, but over a range of Prandtl numbers.


Sign in / Sign up

Export Citation Format

Share Document